出雲平野東部から採取した HK19 コアの堆積層と年代

瀬戸浩二¹•香月興太^{1*}•中西利典²•入月俊明³• 三浦伊織⁴•林田 明⁵•齋藤文紀^{1,6}

Sediment lithology and chronology of the HK19 core from the eastern part of the Izumo Plain, Shimane Prefecture, Japan

Koji Seto¹, Kota Katsuki^{1*}, Toshimichi Nakanishi², Toshiaki Irizuki³, Iori Miura⁴, Akira Hayashida⁵, Yoshiki Saito^{1,6}

Abstract: Detailed lithology and tephra records in core sediment (Core HK19) from the eastern end of the Izumo Plain near the mouth of the Hii River in Shimane Prefecture revealed the formation history of the Izumo Plain and paleo-events of volcanic eruptions and great floods. Accelerator mass spectrometry (AMS) ¹⁴C dating indicates that sediment accumulation began about 10.1 cal. kyr BP under the low-salinity brackish condition. Once this site was under an open bay called Paleo-Shinji Bay, the bay had shifted to the semi-closed condition by sand bar development around 7.5 cal. kyr BP. After that, the laminated sediment started to be deposited in core HK19. Three tephra layers (K-Ah, S3-fa, and SOh) and a remarkable reworking of the K-Ah tephra layer were deposited in this laminated layer. The Sanbe (or Sambe) tephra units (S3-fa and SOh) occur as crypt-tephra layers, which were identified by soft X-ray and extremely high Sr content. The reworked K-Ah tephra was deposited around 6.86 cal. kyr BP. A correlative reworked layer was also found in the sediment layer of Paleo-Shinji Bay beneath the Shimane University campus east of Lake Shinji. This suggests that there was a huge flood in the Hii River basin at that time. The site of core HK19 was rapidly buried after 150 cal. yr BP under the progradation of the Hii River delta by the "kanna-nagashi" iron manufacturing activity.

Key words: Izumo Plain, Hii River, lithology, tephra, Holocene, Mt. Sanbe, Lake Shinji.

* Corresponding Author

¹島根大学エスチュアリー研究センター・Estuary Research Center, Shimane University, Shimane, 690-8504, Japan.

² ふじのくに地球環境史ミュージアム・Museum of Natural and Environmental History, Shizuoka, 422-8017, Japan.

³ 島根大学総合理工学部・Interdisciplinary Faculty of Science and Engineering, Shimane University, Shimane, 690-8504, Japan.

⁴島根大学自然科学研究科·Graduate School of Natural Science and Technology, Shimane University, Shimane, 690-8504, Japan.

⁵ 同志社大学理工学部・Department of Environmental Systems Science, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan.

⁶ 産業技術総合研究所地質調査総合センター・Geological Survey of Japan, AIST, Higashi 1-1-1, Tsukuba 305-8567, Japan.

受付日: 2023 年 4 月 10 日, 受理日: 2023 年 7 月 10 日, WEB 掲載日: 2023 年 9 月 30 日

はじめに

島根県東部に位置する出雲平野は、島根半島と中 国山地に挟まれた宍道湖西方に広がる山陰地方最大 の沖積平野で、その広さは東西約20km、南北約5 kmである. 簸川平野とも呼ばれる出雲平野は中国 山地から流れ込む斐伊川と神戸川によって形成され た平野である. 斐伊川は平野中央部を北流した後. 東へ大きく曲がり 宍道湖に注ぎ、神戸川は平野西部 の砂丘地帯を北西へ流れ日本海に注ぐ(図1).出 雲平野は最終氷期に陸域であった宍道低地帯が完新 世の海水準上昇に伴って水没した古宍道湾に、これ ら2本の河川のデルタが発達し形成された(徳岡ほ か、1990;林、1991;高安克巳・出雲古代景観復元 チーム, 1998; 中村, 2006; 山田・高安, 2006; 高 安, 2019). これまでにも出雲平野では柱状堆積物 が採取され、堆積構造や堆積物の化学組成の変遷か ら上記のような出雲平野の形成過程に関する知見が 得られてきた.

出雲平野の発達形成史を復元する上で、重要な役 割を果たしたのが火山灰層序である. 出雲平野や宍 道湖湖底, さらに宍道湖に連結した汽水湖沼である 中海の堆積物中には複数のテフラ(火山灰層)が報 告されている. 更新世後期以降の堆積物より, 姶良 Tn (AT) テフラ, 鬼界アカホヤ (K-Ah) テフラ, 三瓶木次軽石 (SKP), 三瓶角井降下火山灰 (S2-fl), 三瓶大平山火砕流 (SOh) 起源の石英安山岩砂礫や 降下火山灰層の存在が各所で確認された(例えば, 正岡, 1972; 大西, 1977; 林, 1991; 中村・徳岡, 1996; 三瓶ほか, 1996; 渡辺・遠藤, 1998; 中村, 2006;山田・高安, 2006). 出雲平野の古環境研究 では、これらのテフラ年代を基準として考察したも のも多いが、テフラの同定が行われず、先行研究を もとにテフラが産出した堆積深度からどの噴火によ るテフラか想定した例も多いため、再確認の必要性 がある.本研究では、2019年に出雲平野東部から 採取された柱状堆積物試料(HK19コア)中のテフ ラに関して放射性炭素年代を含む新たな知見が得ら れたため, 堆積層序, 年代層序, テフラの特徴, テ フラの堆積物中の元素組成について議論を行う.

試料と方法

柱状堆積物試料HK19は、2019年1月19日 から26日に出雲平野東部の斐伊川河口南部 (35°25'33.8"N, 132°52'14.5"E,標高0.04m,図1) において、水圧式ピストンコアラーと打ち込み式 コアパックを併用して掘削された.採取した試料 は表土を除いた深度1mから34.71mの堆積物,計 43本のコアである(図2). 柱状堆積物試料は島根 大学エスチュアリー研究センターに運搬し, 打ち込 み式の試料は塩ビ管から押し出し、また水圧式ピス トンコアラーによる試料はシンウォールから押し出 した後半割し、目視による層序の確認と記載と写真 撮影を行った. 半割した試料の片側で年代測定用の テフラ・植物片の採取を行った後,幅5 cm,厚さ 1 cm. 長さ 20 cm あるいは 25 cm の試料を連続で採 取し,軟X線写真の撮影を行った.また、もう片 側の試料には長さ90 cm, 幅 2 cm, 高さ 2 cm の LL チャネル (Nakagawa et al., 2012) および U チャネ ルを押し込み、コアごとの連続試料を採取した. U チャネル試料の残留磁化と磁気特性については林田 ほか(2022)によってすでに報告されている.

年代測定

HK19コアでは多数の植物片(葉,木片,木炭) が確認されており,そのうち状態の良い16点の試 料について加速器質量分析法による¹⁴C年代測定を 韓国地質資源研究院(Hong et al., 2010a,b)で行い, 3 試料を Beta Analytic Inc.で行った.得られた年 代値は IntCal20 (Reimer et al., 2020)による年代補正 Calib8.2 (Stuiver et al., 2021)を用いて暦年較正した. また,HKコアに含まれる4層準の火山灰試料と2 層準の白灰色堆積物試料を京都フィッショントラッ ク社で分析し,再堆積ではないと判断されたテフラ 3 層準を年代推定に用いた(表1,図3).

XRF コアスキャン

HK19 コアのテフラ層準とその前後の層準に関し て,高知大学海洋コア総合研究センターが所有する ITRAX XRF コアスキャナーを用いて LL チャネル 試料の元素分析を行った.分析間隔は 0.2 mm,電 圧 60 kV,電流 40 mA,各層準の X 線照射時間は 100 ms で分析を行った.得られた元素の結果は相 対的なカウント数で表している.

結果

HK19 コアの堆積相

HK19の堆積相について、コア底部より順に述べる(図 2-4). コア底部の深度 34.71-34.04 m (図 2, Core 43)では淡灰色の角礫・砂・シルトの淘汰

図1 島根県東部の地図. HK19 コアならびに先行研究のコア試料採取地点を示す(HB2 コア:中村・徳岡, 1996, HS02, JZ01 コア:山田・高安, 2006, SB1 コア:水野ほか, 1972, 中村・徳岡, 1996). 白灰色は出雲平野(標高 20m 以下)を示す. **Fig. 1** Map of the studied area with core locations of HK19 and previous studies (HB2 core: Nakamura and Tokuoka, 1996; HS2 and JZ01cores: Yamada and Takayasu, 2006, SB1 core: Mizuno et al., 1972, Nakamura and Tokuoka, 1996). Solid circle indicates the coring site of HK19. Open circles indicate the coring sites in the previous papers. Light gray area shows the Izumo Plain (under 20m altitude).

の悪い堆積物からなる. 深度 34.03-33.20 m (Core 42-41) では灰緑色の, 深度 33.20-32.76 m (Core 41) では黒灰色の風化土壌が狭在し、黒灰色層基 底部は侵食面であった. 深度 32.73-23.03 m (Cores 40-30)は暗灰色の塊状泥質堆積物からなり、最下 部にはヤマトシジミ (Corbicula japonica) の合弁 がみられた.また下部から中部にかけて複数の顕 著な白灰色層が確認された(例えば,図2,Core 39, 36). これらの白灰色層は上下の層と比較してやや 高密度であり(図4e)、特に顕著であった層(Core 36:28.68-28.71 m)には粒上の高密度塊が含まれ ていた. 塊状泥質堆積層の上部では、軟 X 線写真 内に生物の痕跡がみられるようになった(図4d). 23.03-12.69 m (Core 29-18) は暗灰色の縞状泥質堆 積物からなる (図4c). 深度 22.51-22.49 m (Core 29) では粗粒の火山灰層, 深度 21.36-21.34 m (Core 28) では白灰色の細粒の火山灰層が狭在した. この 火山灰層は下部層との境界が明瞭であり、最下部が

最も高密度であった. 上部に向かうにつれ段階的に 低密度化し, 上部の境界は波打っていた. 同様に, 深度 18.635-18.63 m (Core 24) と 16.245-16.23 m (Core 22) には白みがかった層準があり、軟 X 線写 真では粗粒の堆積物からなる層が確認された. 深度 16.68-16.62 m (Core 22) では縞状構造をさえぎり、 層厚約6 cm の黒灰色塊状泥質層が確認された. 深 度 12.72-10.34 m (Core 17-14) では灰色から暗灰色 の泥質堆積物が堆積しており、下部では不明瞭な縞 状構造が, 上部では塊状構造が見られた. 両者の境 界は不明瞭で漸移する. 深度 10.34 m (Core 14) に 侵食面があり、深度 10.34-9.49 m (Core 14-13) は 生痕を含むこげ茶色か暗灰色の塊状泥質堆積物から なる (図 4b). 深度 9.49 m 以浅 (Core 12-1) には 砂泥互層が堆積し、上位へ向け砂層が厚く粗粒堆積 物からなる(図4a). この互層の下部には粗粒な白 灰色層がみられた (Core 12: 深度 9.02 m).

図2 HK19コアのコア写真. 写真下の数字はコア写真の深度(m). 写真右側の黄 色三角はテフラを示す. 青三角は産出したヤマトシジミを指す. Core 50 は副孔堆積 物でコア深度 11.92-11.75m. Core 15下部からと Core 16 上部およびその間の堆積物に あたる.

Fig. 2 Photos of the core HK19. The numbers under the photo show the composite depth of cores (m). Yellow and Blue triangles indicate tephra layers and *Corbicula japonica*, respectively. Core 50 was obtained from sub-hole, its depth overlaps between the lower part of core 15 and upper part of core 16.

火山灰層準および火山灰の再堆積層

HK19コアの縞状泥質堆積層中には3層のテフラ と1層の再堆積層が見られた. 縞状泥質堆積層底部 に位置する 22.50-22.49 m (図 2: Core 29) には粗 粒の白灰色層は3層構造であり、軟X線写真では 最下部に薄い高密度層、中部に薄い低密度層、上部 に厚い中密度層が認められ(図 5a),上方への細粒 化を示す. これらの層には珪長質肉薄 bw (バブル ウォール)>pm(軽石)型の火山ガラスが多量に 含まれており、その平均屈折率は 1.5124 であった. 火山ガラスの形態は H (扁平) > T (多孔質), C (中 間型)であり、水和層厚はおよそ5µmであった. 少量のスコリアガラスを含み、スコリアガラスの屈 折率は平均1.5324であった.この層準には少量の 軽鉱物(斜長石:pl)と重鉱物(Opx:斜方輝石, Cpx: 単斜輝石, Oqp: 不透明鉱物, Ap: アバタイ ト > GHb:緑色角閃石)が含まれている. これらの 特徴からこの層は鬼界アカホヤ(K-Ah;町田・新井, 2003)テフラであると同定できる.

深度 21.36-21.34 m (図 2: Core 28 上部)では非 常に明瞭な細粒で均質な白灰色層が認められた. こ の層準は軟 X 線写真では上下の層準と比較して密 度が高い(図 5b).この層準は軽鉱物(Qz:石英・ Kf:カリ長石・pl)が主体で,石質岩片と火山ガラ スも含まれていた.火山ガラスの形態は珪長質肉薄 bw > pm 型であり,平均屈折率は 1.5118 であった. この層準の重鉱物は Ghb, Opq, Bt(黒雲母)を主体 とした.このため, K-Ah テフラの再堆積層である と推測される.

深度 18.635–18.63 m (図 2: Core 24 下部)ではや や白みを帯びる堆積層が確認された.肉眼での識別 は難しいが,軟X線写真から高密度の粗粒堆積物 が容易に確認できた(図 6a).軽鉱物(pl,Qz)が 主体で,ガラス質の岩片を含む.産出した重鉱物は 表1 HK19 コアの堆積年代. (a) ¹⁴C 年代, (b) テフラ年代. Main 2 Sigma は補正した際にもっとも Probability が高かった 2 sigma の年代範囲を示す.

Table 1 Dating results and tephra layers of core HK19, (a) ¹⁴C dating results, (b) tephra layers. Main 2 Sigma indicates the interval of the highest probability age.

Median	Core	Depth in core		Lab. Code	¹⁴ C age		$\delta^{13}C$	$\delta^{13}C$		Calibration Calibr	
Depth (m)	Num.	(cm)	Material		(BP)	std	(‰)	std	data set	(cal. yr BP)	Main 2 sigma
5	6	15	plant	KGM-Owd200004	196	26	-29.6	0.6	IntCal 20	183	141 - 222
10.36	14	32	coal	KGM-Owd200005	155	25	-22.7	1.1	IntCal 20	152	167 - 230
11.385	50	10.5	wood	Beta-647442	640	30	-27.62	-	IntCal 20	599	554 - 614
11.42	50	64	wood	Beta-647703	820	30	-26.37	-	IntCal 20	717	677 - 775
13.19	18	52	plant	KGM-Owd210081	2428	44	-34.8	0.98	IntCal 20	2480	2,351 - 2,543
16.5	22	38	leaf	KGM-Owd210082	3853	38	-32.85	0.57	IntCal 20	4275	4,221 - 4,408
18.5	24	62	leaf	KGM-Owd200006	4725	32	-30.6	0.7	IntCal 20	5463	5,325 - 5,409
20.63	27	21	plant	KGM-Owd200007	5807	36	-30.69	0.48	IntCal 20	6610	6,496 - 6,676
22.4875	29	29.75	plant	KGM-Owd200008	6497	34	-11.39	1.19	IntCal 20	7377	7,322 - 7,433
22.74	29	59	leaf	KGM-Owd200009	7001	48	-36.51	1.48	IntCal 20	7834	7,709 - 7,934
23.1775	30	21.75	leaf	KGM-Owd210084	6635	39	-29.01	0.6	IntCal 20	7517	7,461 - 7,575
25.16	32	41	leaf	KGM-Owd200010	7189	35	-13.1	0.6	IntCal 20	7993	7,934 - 8,039
25.4175	32	66.75	plant	KGM-Owd200011	8549	39	-25.77	2.01	IntCal 20	9525	9,479 - 9,549
26.995	34	48.5	leaf	KGM-Owd210085	7826	76	-33.25	1.73	IntCal 20	8625	6,839 - 6,474
27.97	36	47	plant	KGM-Owd210086	8146	75	-32.89	2.02	IntCal 20	9102	7,369 - 7,026
32.555	41	13.75	wood	KGM-Owd200012	8867	43	-28.9	0.9	IntCal 20	10001	8,975 - 9,318
32.8975	41	48	plant	KGM-Owd200013	9017	39	-29.5	1	IntCal 20	10205	10,144 - 10,246
33.8	42	21	wood	KGM-Owd200014	8956	38	-30.5	1.7	IntCal 20	10119	10,113 - 10,225

(b) tepha lay	vers								
Bottom	Core	2 Depth in core Calibrated ¹⁴ C ag					age		
Depth (m)	Num.	(cm)	Material	Deposit	(Symbol)	(cal. yr BP)		std	Reference
16.245	22	12.5	Ash	Sanbe Taiheizan pyroclastic deposit Sanbe-Oohirayama fall deposit	(Th-Pd, SOh)	4036	±	32	Albert et al. (2018), Maruyama et al. (2021)
18.635	24	75	Ash	Tsunoi-Ash fall deposit	(S3-fa)	5501	±	20	Fukuoka & Matsui (2002), Albert et al. (2018), Maruyama et al. (2020, 2021)
21.36	28	4	Rework Ash			-		-	
22.51	29	32	Ash	Kikai-Akahoya	(K-Ah)	7253	±	46	Machida and Arai (2003), Maruyama et al. (2019)

GHb, Bt, Opq が主体であった. 産出する火山ガラス は珪長質 It(不規則), pm 型で珪長質 microlite が含 まれていた.火山ガラスの平均屈折率は 1.49963 で, 形態は It, T > C, H であった.以上より三瓶角井降 下火山灰(S3-fa: 福岡・松井, 2022; Maruyama et al., 2021)である可能性が高い.

深度 16.245–16.23 m (図 2: Core 29 上部) にもや や白みを帯びた堆積層が確認された.火山灰層であ ることは肉眼識別では難しいが,軟 X 線写真では 高密度の粗粒堆積物が容易に確認できた(図 6b). この層も軽鉱物(pl, Qz)が主体で,ガラス質の岩 片を含む.産出した重鉱物は GHb, Opq, Bt が主体で あった.産出した火山ガラスは珪長質 It で microlite を含む岩片質ガラスが主体であった.平均屈折率は 1.4974,形態は It > H, C, T で,三瓶大平山降下火 山灰(Th-pd: Albert et al., 2018; SOh: Maruyama et al., 2021)であると推測される.

これら3層の火山灰層準には、Uチャネル試料の

初磁化率測定の結果でもピークが認められた(林田 ほか,2022).また,K-Ahテフラの再堆積層を含 めたこれら4層すべてに少量のATテフラの火山ガ ラスが含まれていた.編状堆積物層上下の層準で見 られた白灰色層(深度9.02mおよび28.68-28.71m) においても少量のATテフラの火山ガラスが確認さ れた.

放射性炭素年代

HK19 コアで得られた¹⁴C 暦年較正年代を表1 お よび図3に示した.コア底部付近の風化土壌層か ら産出した2 試料(深度33.80,32.90 m)の年代は 10,119 cal. yr BP と 10,205 cal. yr BP を示した.風化 土壌層の上部に堆積する暗灰色の塊状泥質堆積物 層では,最下部付近(深度32.56 m)で10,001 cal. yr BP を示し,上部(深度23.18 m)の7,517 cal. yr BP にかけて,明らかに上下の層準より古い年代を 示した1 試料を除くと,ほぼ一様の堆積速度(0.26

図3 HK19 コアの層序と堆積年代.(a)深度ごとの層序を示す. 粒径は細かい方から順に, 泥・シルト・極細粒砂・細粒砂・中粒砂・粗粒砂・極粗粒砂・細礫・小礫の9段階とした.(b)堆積物中の¹⁴C ならびに火山灰による堆積年代

Fig. 3 Lithology and age of HK19 core. (a) Depth plot of the core lithology. Horizon axis show the grain size (med, silt, very fine sand, fine sand, middle sand, coarse sand, very coarse sand, granule, and pebble). (b) The depositional age of HK19 core based on ¹⁴C and tephra layers.

cm yr¹)を示した. 暗灰色の縞状泥質堆積物には上 述の3層の火山灰層が含まれていた. 縞状泥質堆積 物層上部(深度13.19m)から得られた較正年代は 2,480 cal. yr BP を示した. K-Ah テフラと深度 13.19 m間の堆積速度は0.20 cm yr¹, 上部層でやや堆積 速度が低下するものの比較的一様であった. 深度 12.72-10.34 m では灰色から暗灰色の泥質堆積物が 堆積しており,下部の不明瞭な縞状構造から上部の 塊状構造へ堆積構造の変化が見られたが、 境界にあ たる堆積物がコア 15-16 間で欠落していたため(図 2), 副孔から採取したコア 50 (深度 10.92-11.78 m) を用いて、11.42 m および 11.385 m の木片からそれ ぞれ 717 および 599 cal. yr BP の年代を得た. コア 最上部の砂泥互層直下(深度10.36m)と砂泥互層 内(深度 5.00 m)の堆積年代はそれぞれ, 152 cal. yr BP と 183 cal. yr BP を示した.

テフラ層準の元素組成

K-Ah テフラを含む上下 20 cm の元素組成を図 4a に示す. K-Ah テフラ層準では, Si, K, Mn が上 下層より明らかに多く含まれている. Ca, Sr も多い が下部層にさらに多い層準が確認された. 一方で, Ti, Fe が少なく, 特に Fe は顕著であった. Zr は K-Ah テフラ下部で少なく, 上部で多かった. K-Ah テフラの再堆積層では, K-Ah テフラ同様 Si, K が 上下層より多く Fe が少ない(図 4b). しかしながら, K-Ah テフラの再堆積層では K-Ah テフラとは逆に, Ti が多く, Ca, Mn, Sr が少なく産出した. Zr は再堆 積層全般で高かった.

三瓶角井降下火山灰と三瓶大平山降下火山灰の元 素組成を図 5a, b に示した.三瓶角井降下火山灰に は Si, Ca, Sr が多く含まれ,特に Sr が顕著であった. これらの元素は火山灰層の上部 5 cm ほどで多く含 まれ,上部に上がるにしたがって少なくなった.ま た, Ti, Fe, Mn は火山灰層で少なく, Ti は Si, Ca, Sr

出雲平野東部から採取した HK19 コアの堆積層と年代

deposit, and (a) interbedded mud and sand.

とは逆に火山灰層の上部 5 cm ほどで少なく,上部 に上がるにしたがって多くなった.三瓶大平山降下 火山灰においても Si, Ca, Sr が多く含まれ,特に Sr が顕著であった.一方でその他の元素に顕著な変動 は見られなかった.

考察

HK19 コアの堆積層序

現在の宍道湖や出雲平野には最終氷期最盛期に形成された谷地形が埋もれている(徳岡ほか,1990; 中村,2006;高安,2019).約11,000年前の宍道低地帯は,北側である島根半島の南方に谷地形があったとされている.当時の海面は-35m付近にあり,現在島根県松江市を流れる大橋川にある塩楯島付近を分水嶺とし,西流する古宍道川が宍道低地帯を流れ,谷地形に小さな淡水域が形成された. HK19コア最下部の礫・砂・シルト混合堆積物の年代は得られてないが,その上部の風化土壌の木片から約10,100 cal. yr BPの年代が得られており,風化 土壌層上部の塊状泥質堆積物の最下部の木片から は約 10,000 cal. yr BP の年代が得られている(表 1, 図 3). HK19 コアが採取された出雲平野東端部で は、約 10,000 cal. yr BP に湖沼に覆われたと考えら れる. 塊状泥質堆積物の最下層(深度 32.70 m)か らはヤマトシジミの合弁が見つかっており(図2. Core 40), この湖沼は低鹹汽水湖であったと言える. 塊状泥質堆積物が堆積し始めた層準が、 コア深度 32.73 m (標高-32.69 m) であり, 汽水湖であること から,約10,000 cal. yr BP の最大潮位面は -32.69 m より浅かったと考えられる. 出雲平野北西部で採取 された HS02 コアではヤマトシジミが標高 --37.38 m から見つかっており、その堆積年代は 10,510 cal. yr BP である(山田・高安, 2006). 同様に出雲平野南 西部の神西湖から採取された JZ01 コアでは基底礫 層直上の標高 -25.06 m から 9,530 cal. yr BP のヤマト シジミが得られている(山田・高安, 2006). これ ら出雲平野西部のコア試料から想定される約 10,000 cal. yr の縞状泥質堆積物ヤマトシジミの生息水深の 誤差, 地層の厚密沈下を考えると大きな差異はない.

図5 (a) K-Ah テフラおよび (b) その再堆積層周辺の写真 (左), 軟 X 線写真 (中央) と元素変動 (右). 写真上の数字はコア番号および軟 X線写真のコア内深度を示す. Fig. 5 Photo (left), soft x-ray radiograph (center), and major mineral components (right) around (a) K-Ah tephra and (b) K-Ah reworked deposits. The number on images suggests the core number and depth in core of the soft-X images.

Fig. 6 Photo (left), soft x-ray radiograph (center), and major mineral components (right) around (a) Shigaku-Ash fall deposit layer and (b) Sanbe-Taiheizan pd layer. The number on images suggests the core number and depth in core of the soft-X images.

図7 島根大学地下からロシア式ピートサンプ ラーで採取されたアカホヤ火山灰層およびその 再堆積層.

Fig. 7 K-Ah tephra and K-Ah reworked deposits obtained from the open pit in Shimane University by Russian peat sampler.

HK19 コアはコア深度 23.03 m で塊状堆積物から 暗灰色の縞状泥質堆積物へと堆積相が変わる(図 3). 縞状泥質堆積物は厚さ数 mm 程度の高密度層 と低密度層が繰り返し堆積した葉理層であり(図 3, 4), このような微細な堆積構造が残されていること は,生物擾乱などにより湖底(海底)が攪拌されな かったことを示している.このような堆積構造は水 底が攪拌されないほど深く,水温躍層などが発達す る湖水底層への酸素供給が乏しく底層の溶存酸素が 少ない湖沼で形成されやすい(福沢, 1995). 縞状 泥質堆積物の堆積開始年代は約7,460 cal. yr BP であ

り、HK19コアの採取地点である出雲平野東端部は、 この時急激に湖底(海底)が貧酸素水塊に覆われた ことを示している.約8,000年前の海水準は-6.5m であり、急激な海水準の上昇に伴い、古宍道湾と呼 ばれる内湾が中国山地と島根半島間に形成されてい た(高安, 2019). HK19 コアはこの古宍道湾の中 央部にあたる. HK19 コアにおいても深度 23.03 m で初磁化率がやや低下するが(林田ほか, 2022)、 約 7,500 年前から 7,400 年前にかけて出雲平野西部 のコアでは初磁化率が急減し, 宍道湖湖心でもわず かに減少する. 高安(2019)はこれらの変化を古宍 道湾の湾口にあたる西側で出雲長浜砂州が発達し, 古宍道湾の閉鎖水域化が始まったためだと推測して いるが、HK19コアの結果も閉鎖水域化を裏付ける ものである. K-Ah テフラおよびその再堆積層,三 瓶角井降下火山灰と三瓶大平山降下火山灰の4層 は、この縞状泥質堆積層内に含まれており(図3)、 半閉鎖環境の古宍道湾下で堆積している.

HK19コアの縞状構造は深度 12.69 m まで堆積し, およそ深度12mにかけて次第に不明瞭となり、や がて塊状構造となる(図3). すなわち, 深度 12.69 mの堆積年代,約2,100 cal. yr BP まで底層が貧酸素 化する閉鎖的汽水環境が継続し,その後次第に底 層の貧酸素化が解消されている. 塊状堆積物層は 深度 10.36 m,約 150 cal. yr BP まで堆積するが,深 度 11.47 m から 11.37 m の 間 (図 2, Core 15 と 16 の間)において堆積物の色の変化が確認できる.こ の深度を境界に堆積物中の初磁化率および非履歴性 磁化率が急激に増加しており、細粒マグネタイト の流入量が急増したことが示唆される(林田ほか, 2022). すなわちかつて出雲平野を西流していた斐 伊川が、東方へ流れを変え、宍道湖にそそぐよう になった斐伊川東流イベント(徳岡ほか, 1990; 高 安ほか, 2000; 瀬戸ほか, 2006; 中村 2006; 山田・高 安,2006)がこの間に起きたと考えられる.副孔 のHK19-50コア(深度10.92-11.78m)の下部で磁 化率の顕著な変化が確認されており、その直上(深 度 11.42 m)の 14C 暦年較正年代が 1,175 - 1,273 cal. AD (775 - 677 yr BP) となっていることから,西暦 1200年代に大きな環境変化があったことが示唆さ れる. HK19 コア上部の深度 10.36 m 以浅では, デ ルタ堆積物と思われる上方粗粒化する砂泥互層が堆 積しているが、この層準は 150 cal. yr BP 以降に急 激に堆積している (図 2, 3). 西暦 1700 年代後半か ら1800年代にかけて、斐伊川流域ではかんな流し が盛行し、その間宍道湖沿岸を含む斐伊川下流では たびたび洪水が発生している(大矢,2010).HK19 コアの上層はかんな流しにより増加した多量の土砂 が斐伊川デルタを前進させたことにより堆積した層 準であると言える.

火山灰層の年代対比

HK19コアの縞状泥質堆積物内の3つの火山灰層, 深度 22.51-22.49 mの K-Ah テフラ, 深度 18.635-18.63 mの三瓶角井降下火山灰,深度 16.245-16.23 mの三瓶大平山降下火山灰は、水月湖で確認された 火山灰層 (Albert et al., 2018; Maruyama et al., 2019, 2020, 2021) との年代対比を行った. HK19 コアに おける K-Ah テフラの直上 22.488 m で採取された木 片は K-Ah テフラの年代(7,253 cal. yr BP)と比較 しておよそ 100 年古い年代値(7,377 cal. yr BP)を 示した(表1).一方で,水月湖の三瓶山火山灰層 の年代はHK19コアの火山灰層付近の炭素年代はほ ぼ一致した(表1.図3).水月湖の堆積物中に見ら れた三瓶山火山灰層の名称は, Albert et al. (2018) と Maruyama et al. (2019, 2020) 間で混乱が見られるが, 本稿では Maruyama et al. (2021) の見解に従い、下部 の三瓶山火山灰層を角井降下火山灰,上部の三瓶山 テフラ層を大平山降下火山灰とした. 角井降下火山 灰の記号は福岡・松井(2002)で示されたもの(S3fa)を使用し、大平山降下火山灰はこれらの論文で 示されたものを併記した(表1).水月湖における 角井降下火山灰の堆積年代は 5,501 cal. yr BP, 大平 山降下火山灰の年代は 4,036 cal. yr BP である (Albert et al., 2018; Maruyama et al., 2019, 2020, 2021). HK19 コアでは角井降下火山灰層上部より13 cm 上部で採 取された葉の年代が 5,463 cal yr BP, 大平山降下火 山灰より 25cm 下部で採取された葉の年代が 4,275 cal yr BP であった (表 1). このため, HK19 コアで 見られた三瓶山起源の火山灰層は水月湖で確認され た火山灰層と同一のものであり,角井降下火山灰お よび大平山降下火山灰は広域テフラであることが伺 える.

元素を用いた三瓶山起源の火山灰同定

HK19 コアで見られた三瓶山テフラの特徴の一つ として,肉眼での同定が難しいことが挙げられる(図 2,6). これはおそらく出雲平野東部の堆積物に共 通した特徴であり,出雲平野東部から宍道湖・中海 にかけて,K-Ahテフラの報告例は多いが(例えば, 中村・徳岡,1996;三瓶ほか,1996;山田・高安, 2006;中村,2006),三瓶山テフラの報告は限定的

である(正岡, 1972;三浦・林, 1991). HK19コ アで見られた2層の三瓶山を起源とするテフラ層は Sr 含有量が顕著に高い. HK19 コアの縞状堆積層 では三瓶山起源のテフラ層以外の Sr のカウント数 が1,000前後で安定しており、三瓶角井降下火山灰 層の 10,000 以上と三瓶大平山降下火山灰層の 4,000 以上のSrカウント数は明瞭な特徴である(図6). 一方で、K-Ah テフラの Sr カウント数は火山灰以外 の層準よりは高いが、その値は2,000 弱で三瓶山起 源のテフラと比べて明らかに低い(図5).三瓶山 の溶岩ドームはアダカイトに分類される岩石で構成 され、高い Sr/Y 比と低い Y 濃度を持っている(浅 野ほか、2018). これは異常高温状態のプレートが 部分融解してマグマを形成している三瓶山アダカイ トマグマの特徴である. そのため、三瓶山のアダカ イトマグマから噴出したテフラは高い Sr 濃度をも つと考えられる. 出雲平野に堆積する三瓶山起源の テフラは堆積物中の Sr 含有量から容易に見分ける ことが可能だと言える.

アカホヤ再堆積層の堆積年代と分布

HK19 コアの 21.36-21.34 m でみられる K-Ah テフ ラの再堆積層は、均質な白灰色層が特徴的な識別が 容易な層準である(図 2,5). HK19 コアで見られる K-Ah テフラは鳥取県の東郷池や福井県の水月湖で も見られる広域テフラであるが(加藤ほか, 1998; Albert et al., 2018; Maruyama et al., 2019, 2020, 2021), K-Ah テフラの再堆積層は他地域からの報告がない ことから出雲地方の局地的なイベント層であると考 えられる. HK19 コアの植物 ¹⁴C 年代より推測され る K-Ah テフラ再堆積層の堆積年代は約 6,860 cal. yr BP である (表 1, 図 3). K-Ah テフラ再堆積層は松 江市島根大学(図1)の構内遺跡の発掘現場におい ても報告されている(図7). 島根大学の構内遺跡(現 次世代たたら協創センター地下)では、標高-2.5 m 地点に K-Ah テフラが堆積しており、その上位標高 -2.3 mに K-Ah テフラ再堆積層が確認されている(川 原ほか, 2022). K-Ah テフラ再堆積層が堆積した 当時は,現在出雲平野がある地域は当時古宍道湾と 呼ばれ西方が日本海に開いた内湾であった(徳岡ほ か, 1990; 中村, 2006; 高安, 2019). 古宍道湾南 部には斐伊川と神戸川の河口からなるデルタが発達 していた.HK19コアが採取された地点は古宍道湾 の中央部にあたり, 島根大学は古宍道湾の東端部に あたる. K-Ah テフラ再堆積層では他の火山灰層と 異なり、陸源元素である Ti のカウント数が高いこ

とを考慮すると(図 5, 6),約 6,860 cal. yr BP に中 国山地の斐伊川と神戸川一帯に堆積していた K-Ah 火山灰が,おそらくは豪雨・洪水によって古宍道湾 に流入し,湾内全域に堆積する巨大イベントが発生 したのではないかと考えられる. K-Ah テフラ再堆 積層は,下部層が薄くやや高密度であるももの全体 として均質で粗粒な堆積物は見られない(図 5, 7). これは当時の斐伊川や神戸川の河口が島根大学や HK19 コアが採取された地点より遠く粗粒な堆積物 は届かなかったのが原因だと推測できる.

一方で, これまで出雲平野や宍道湖の堆積物を 扱った先行研究において、K-Ah テフラ再堆積層が 報告された事例は存在しない. しかしながら、 宍道 湖・中海の湖底堆積物を扱った水野ほか(1972)は, 宍道湖西部で得られた試料 SB1 において、コア深 度 10.3 m, 9.8 m, 9.3 m に 3 層のテフラ(火山灰層準) が含まれると報告した.水野ほか(1972)はこれら のテフラを三瓶山5期の噴出物ではないかと推測し たが、その後コア深度 10.3 m のテフラは中村・徳 岡 (1996) により検討され、K-Ah テフラであるこ とが確認された、残念なことに中村・徳岡(1996) による分析時には 9.8 m と 9.3 m のテフラは失われ ており、これらのテフラがなんであるのか不明であ るが、コア深度から考えると K-Ah テフラ再堆積層 を含んでいる可能性は十分にある. また, 中村・徳 岡(1996)ではSB1コアにおける K-Ah テフラ付近 の花粉帯が、それまで宍道湖・中海地域全体で報告 されてきた花粉帯と異なっており、同じ宍道湖内の 宍道湖湖心から得られた BP1 コアとも異なってい ることを明らかにしている.同じ湖沼内において同 じテフラを含む花粉帯が異なることはまずあり得な いため、中村・徳岡(1996)は花粉帯境界の再検討 が必要だと報告しているが、HK19コアや島根大学 で見られた K-Ah テフラ再堆積層は層が厚く下層が 明瞭であるため特徴的であり, K-Ah テフラ以上に 認識しやすいことを考えると(図 2,7), BP1 コアを 含む先行研究の堆積物のいくつかは K-Ah テフラ再 堆積層を K-Ah テフラと認識していた可能性が考え らえる.

出雲平野や宍道湖で報告される堆積物研究におい て K-Ah テフラであると推定される層準が,多くの 地点で1層準である原因として,本研究を含む出雲・ 宍道湖地域の掘削研究のほとんどが一つの穴で掘削 をおこなっているため,コアパイプ間の堆積物欠損 が避けられないことが挙げられるのではないかと考 えられる.実際に完新統全体を回収している柱状堆 積物試料においても K-Ah テフラが見つかっていな い事例も報告されている(例えば, HB2 コア;中村・ 徳岡, 1996 や HS02 コア;山田・高安, 2006).出 雲平野における正確な堆積構造・火山灰層序を把握 するためには,連続的なボーリング試料の採取が不 可欠であり,同一地点において複数のボーリング孔 による柱状堆積物の比較が必須となると思われる.

まとめ

斐伊川河口近くの出雲平野東端部において長さ 34.71 m の柱状堆積物試料 HK19 コアを 2019 年 1 月 に採取し、堆積層序とテフラの確認を行った. 堆積 層序は半割試料および軟 X 線写真を用いて確認し、 堆積年代は植物片の¹⁴C年代および火山灰を用いて 決定した. ボーリング地点の出雲平野東端部の完新 統堆積物は約10,100年前に汽水環境下で堆積を開 始した. 7,560 年前から 2,100 年前にかけて閉鎖的 な汽水環境下で湖底(海底)には縞状構造が発達し, 縞状堆積物内には再堆積層1つを含む3層のテフラ と1層のテフラの再堆積層が確認された。約7,250 年前に K-Ah テフラが堆積し,約6,860 年前に大洪 水による K-Ah 再堆積層が堆積したと考えられる. また, 三瓶山を起源とする三瓶角井降下火山灰層と 三瓶大平山降下火山灰層が約5,500年前と4,063年 前とそれぞれ堆積した. これらの三瓶山を起源とす る火山灰層は肉眼では識別しにくいが, Sr を多く 含有するため、Srによる識別が可能である.また、 粗粒であるため、軟X線写真では火山灰層を確認 することができる.

謝 辞

本研究では、コア分割にあたり島根大学総合理工 学部入月研究室の学生らに助力いただいた. 韓国地 質資源研究院での年代測定ではホン ワン センター 長にお世話になりました.本研究には、島根大学エ スチュアリー研究センターのプロジェクト経費なら びに文部科学省科学研究費補助金(基盤A,研究代 表者:齋藤文紀,課題番号:21H045221C;基盤C, 研究代表者:香月興太,課題番号:19K039951A; 基 盤 B,研究代表者:中西利典,課題番号: 18H01310)の一部を使用させていただいた.また, 元素分析は高知大学海洋コア総合研究センターの全 国共同利用(採択番号:21A041)として行われま した.元素分析には高知大学の村山教授に許可をい ただいた.また,松崎技術職員,岡林技術補佐員に は分析を行っていただき,補佐員の方々に手伝って いただいた.軟X線写真は島根大学エスチュアリー 研究センターの舩來技術職員に撮影していただい た.ここに記して謝意を表します.

引用文献

- Albert, P.G., Smith, V.C., Suzuki, T., Tomlinson, E.L., Nakagawa, T., McLean, D., Yamada, M., Staff, R.A., Schlolaut, G., Takemura, K., Nagahashi, Y., Kimura, J., and Suigetsu 2006 Project Members (2018) Constraints on the frequency and dispersal of explosive eruptions at Sanbe and Daisen volcanoes (South-West Japan Arc) from the distal Lake Suigetsu record (SG06 core). Earth-Science Reviews, 185: 1004–1028.
- 浅野一平・五井健登,清杉孝司・鈴木桂子・巽 好幸 (2018) 三瓶火山溶岩ドームの形成過程.火山,63: 19-32.
- 福岡 孝・松井整司 (2002) AT 降灰以降の三瓶火山 噴出物の層序. 地球科学, 56: 105–122.
- 福沢仁之(1995) 天然の「時計」・「環境変動検出 計」としての湖沼の年編堆積物. 第四紀研究, 34: 135-149.
- 林 正久(1991) 出雲平野の地形発達.地理学評論, 64(A): 26-46.
- 林田 明・齋藤文紀・瀬戸浩二・香月興太・服部真也・ 八木涼太 (2022) 宍道湖西岸で採取された完新世 堆積物 (HK19 コア)の残留磁化と磁気特性: 汽水 域の古環境復元への示唆. LAGUNA (汽水域研究), 29: 75-86.
- Hong, W., Park, J.H., Kim, K.J., Woo, H.J., Kim, J.K., Choi, H.K., and Kim, G.D. (2010a) Establishment of chemical preparation methods and development of an automated reduction system for AMS sample preparation at KIGAM. Radiocarbon, 52(3): 1277– 1287.
- Hong, W., Park, J.H., Sung, K.S., Woo, H.J., Kim, J.K., Choi, H.W., and Kim, G.D. (2010b) A new1MV AMS facility at KIGAM. Radiocarbon, 52: 243–251.
- 川原範子・入月俊明・会下和宏・瀬戸浩二・齋藤文紀・ 香月興太・田中智久・David L. Dettman (2022) 島 根大学松江キャンパスにおける完新世の古環境 – 第 22 次発掘調査研究報告 –. LAGUNA (汽水域 研究), 29: 115-132.
- 加藤めぐみ・福澤仁之・安田喜憲・藤原治(1998)鳥

取県東郷池湖底堆積物の層序と年編. LAGUNA(汽水域研究), 5: 27–37.

- 町田 洋・新井房夫 (2003) 新編火山灰アトラス. 東 京大学出版会, 336p.
- Maruyama, S., Takemura, K., Hirata, T., Yamashita, T., and Danhara, T. (2019) Petrographic properties of visible tephra layers in SG93 and SG06 drill core samples from Lake Suigetsu, central Japan. Journal of Geography (Chigaku Zasshi), 128: 879–903.
- Maruyama, S., Takemura, K., Hirata, T., Yamashita, T., and Danhara, T. (2020) Major and trace element abundances in volcanic glass shards in visible tephras in SG93 and SG06 drillcore samples from Lake Suigetsu, central Japan, obtained using femtosecond LA-ICP-MS. Journal of Quaternary Science, 35: 66– 80.
- Maruyama, S., Yamashita, T., Hirata, T., and Danhara, T. (2021) Geochemical Variations in Eruptive Products of Sambe Volcano, Southwest Japan, Based on Correlations of Tephra Layers in Drill Cores from Lake Suigetsu. Journal of Geography (Chigaku Zasshi) 130: 429–443.
- 正岡栄治(1972) 重鉱物組成からみた中海・宍道湖 湖底下の第四紀火山灰.第四紀研究,11:61-69.
- 三浦 清・林 正久(1991) 中国・四国地方の第四紀テ フラ研究 — 広域テフラを中心として一. 第四紀研究, 30: 339–351.
- 水野篤行・大嶋和雄・中尾征三・野口寧世・正岡栄治 (1972) 中海・宍道湖の形成過程とその問題点.地 質学論集,7:113-124.
- Nakagawa T., Gotanda K., Haraguchi T., Danhara, Yonenobu H., Brauer A., Yokoyama Y., Tada R., Takemura K., Staff R.A., Payne R., Ramsey C.B. Bryant C., Brock F., Schlolaut G., Marshall M., Tarasov P., Lamb H., Suigetsu 2006 Project Members (2012) SG06, a fully continuous and varved sediment core from Lake Suigetsu, Japan: stratigraphy and potential for improving the radiocarbon calibration model and understanding of late Quaternary climate changes. Quaternary Science Reviews 36, 164–176.
- 中村唯史・徳岡隆夫 (1996) 宍道湖ボーリング SB1 か ら発見されたアカホヤ火山灰と完新世の古地理変 遷についての再検討. 島根大学地球資源環境学研 究報告, 15: 35–40.
- 中村唯史(2006)神戸川デルタの地形発達. 島根県 立三瓶自然館研究報告,4:25-29.

- 大西郁夫(1977)出雲海岸平野下第四紀堆積物の花 粉分析. 地質学雑誌,83:606-616.
- 大矢幸雄(2010) 斐伊川治水の歴史と水郷松江.水 利科学, 313: 1-18.
- Reimer, P.J., Austin, W.E.N., Bard, E., Bayliss, A., Blackwell, P.G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kromer, B., Manning, S.W., Muscheler, R., Palmer, J.G., Pearson, C., van der Plicht, J., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Turney, C.S.M., Wacker, L., Adolphi, F., Buntgen, U., Capano, M., Fahrni, S.M., Fogtmann-Schulz, A., Friedrich, R., Kohler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., Talamo, S. (2020) The IntCal20 northern hemisphere radiocarbon age calibration curve (0-55 cal kBP). Radiocarbon, 62: 725–757.
- 三瓶良和・松本英二・徳岡隆夫・井上大栄 (1996) 中 海における過去 8,000 年間の有機炭素埋積速度
 -Carbon sink としての汽水域堆積物 -. 第四紀研究, 35: 113–124.
- 瀬戸浩二・中武 誠・佐藤高晴・香月興太 (2006) 斐 伊川の東流イベントとそれが及ぼす堆積環境への影 響. 第四紀研究, 45: 375–390.
- Stuiver, M., Reimer, P.J., and Reimer, R.W. (2021) CALIB 8.2 [WWW program] at http://calib.org.
- 高安克己 (2019) 宍道湖・中海地域の完新世海水準 変動と古地理変遷. 松江市史 史料編 1「自然環 境」電子版附録, 松江市史編集委員会編, 松江市. 12p.
- 高安克巳・出雲古代景観復元チーム (1998) コア SJ96 の概要と宍道湖の古環境変遷. LAGUNA (汽水域 研究), 5: 1–13.
- 高安克已・田中秀典・佐藤慎一(2000) 宍道湖コア SJ96 に見られるヌマコダキガイ密集層の古環境的 意味:サンフランシスコ湾の例との比較から. 島根 大学地球資源環境学研究報告, 19: 37–45.
- 徳岡隆夫・大西郁夫・高安克巳・三梨昂(1990)中海・ 宍道湖の地史と環境変化.地質学論集,36:15–34.
- 渡辺正巳・遠藤正樹(1998)出雲平野中央部小山遺 跡における地質層序と古環境.LAGUNA(汽水域 研究),5:215-223.
- 山田和芳・高安克己(2006)出雲平野 宍道湖地域

における完新世の古環境変動-ボーリングコア解析 による検討-. 第四紀研究,45:391-405.