資料

サロマ湖・網走湖・能取湖・藻琴湖・濤沸湖の 表層堆積物における主要元素の分布(予報)

高田裕行^{1*}·瀬戸浩二¹·前川公彦²·川尻敏文³

Data report: Preliminary result of major elements of surface sediments in Lakes Saroma, Abashiri, Notoro, Mokoto and Tofutsu, Northern Japan

Hiroyuki Takata^{1*}, Koji Seto¹, Kimihiko Maekawa² and Toshiaki Kawajiri³

Abstract: We analyzed chemical composition of eleven major elements of surface sediments in Lakes Saroma, Abashiri, Notoro, Mokoto and Tofutsu, northern Japan, using X-ray fluorescence (XRF) analysis. Based on R-mode principal component analysis, two principal components can explain 77% of total variance in the eleven elements of surface sediments in Lake Saroma. Principal Component 1 (PC1) is related to variation in mineral composition with grain size of surface sediments, whereas PC2 is related to production and accumulation of biogenic carbonate grains, such as molluscan shells. On the other hand, two principal components can explain 75% of total variance in the eleven elements in Lake Abashiri. PC1 is related to production and accumulation of biogenic carbonate grains in the lake shallows and the amount of sulfide with hypolimnetic anoxic water, whereas PC2 might be related to the abundance of siliciclastics and/ or diatom valves, and the amount of authigenic salts derived from interstitial water in the samples during sample processing. Thus, the distributions of major elements in surface sediments using XRF analysis may provide useful information about mineral composition of siliciclastics, sulfide, and biogenic carbonate in Lakes Saroma and Abashiri.

Key words: Lake Saroma, Lake Abashiri, XRF analysis, chemical composition

¹ 島根大学汽水域研究センター Research Center for Coastal Lagoon Environments, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Japan.

^{(*} 現所属: 釜山大学海洋学科, Marine Research Institute, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Busan 609-735, Korea)

² サロマ湖養殖漁業協同組合 Aquaculture and Research Institute of Saroma Lake, Sakaeura, Kitami 093-0216, Japan.

³ 西網走漁業協同組合 Nishi-Abashiri Fishery Cooperative Association, 1-7-1 Ohmagari, Abashiri 093-0045, Japan.

受付日:2016年4月11日,受理日:2016年7月1日

はじめに

北海道東部のオホーツク海沿岸には、サロマ湖・網 走湖をはじめとする多くの汽水湖沼が存在する.これ らの汽水湖沼に対して、これまでに地形学的な検討お よび湖底堆積物の柱状試料を用いた堆積学的研究か ら、同水域の第四紀後期の古環境変遷の概要が、明 らかにされている(大島ほか、1966;菊池ほか、1984). またサロマ湖・能取湖では、近年、堆積物柱状試料 の放射化学分析によって詳細な年代を推定し、さらに 微化石分析を行うことで、湖の栄養状態に着目して 20 世紀における湖内環境の変遷を、詳細に理解しようと する試みも行われている(Katsuki et al., 2009; 2012). 一方、網走湖では、湖深部に特徴的に認められる縞 状堆積物の産状・成因について、堆積物柱状試料を 用いた堆積学的研究が行われている(許ほか、2012).

我々は 2005 年 9 ~ 10 月に、サロマ湖養殖漁業協 同組合からの委託研究「北海道サロマ湖における底 質環境に関する研究」の一環としてサロマ湖の全域 で、島根大学の「汽水域の自然・環境再生研究拠点 形成プロジェクト|の一環として網走湖・能取(のとろ) 湖・藻琴(もこと)湖・濤沸(とうふつ)湖の湖内全 域において、水質・底質に関する検討を行った.本報 告では、サロマ湖・網走湖・能取湖・藻琴湖・濤沸 湖における蛍光 X 線分析を用いた表層堆積物の主要 元素組成に関して報告する. さらに、サロマ湖および 網走湖については、主成分分析の結果にもとづいて、 若干の考察を行った. なお, 残りの三湖沼について の考察は、今後別論にて報告予定である、これまで、 サロマ湖・網走湖では堆積物の粒度組成(大島ほか, 1966; 高安, 1996; 西浜·干川, 1992) ·地球化学的 特性(大島ほか、1966;西浜・干川、1992;三瓶ほか、 1997; Terasaki et al., 2013) ・ 湖底堆積物の堆積体の分 布形状(仁科,2003)に関する検討は行われてきたも のの、堆積物の主要元素組成に関する報告事例がな かった. 堆積物の化学組成に関する情報は、湖内に 運搬される陸源砕屑物の供給源や、湖水の化学的特 性を反映した自生鉱物の形成状況などを、理解する手 がかりとなりうる.本報告の成果は、今後、これらの汽 水湖沼において堆積学的検討にもとづく古環境復元を行 なう際に、有用な基礎情報になるものと期待される.

調査水域と研究方法

サロマ湖はオホーツク海に面した日本最大の海跡湖 である.北北東-南南西に伸張した湖内の地形的な

高まりによって、2つの湖盆(主湖盆・副湖盆)に分か れており、最大水深は約19mである、湖は砂州に開 いた2カ所の湖口(現湖口・第二湖口)で、オホーツ ク海と連絡している. また, 主な流入河川として, 湖 南東部に佐呂間別川,西部に芭露川がある.湖水の 塩分は,ほとんど海水のものに近い.湖水の上下混 合はよいが, 夏季に温度に伴う弱い密度成層のため, 主湖盆深部で溶存酸素量がしばしば低下する(多田・ 西浜、1988).調査時の湖底直上水の水温・塩分・溶 存酸素量は、それぞれ 17.28 - 19.01°C、31.78 - 33.63、 5.39 - 8.33 mgl⁻¹である. 底質は、湖浅部は中~粗粒 砂からなるが、 湖深部においては有機物に富む泥から なる(高安, 1996).一方,網走湖は、オホーツク海 と湖北東部の河道で連絡する海跡湖である. この河 道は長さが 7.2 km と長く、その水深も浅いため、湖 水と外洋水の交換の程度はよくない. 主な流入河川と して、湖南部に網走川、東部に女満別川がある。湖 水では, 流入河川に由来する低塩分水とオホーツク 海から遡上する高塩分水によって、強固な密度成層が ほぼ年間を通して発達する(今田ほか,1995;安富ほか, 2000).調査時の湖底直上水の水温・塩分・溶存酸 素量は、それぞれ 6.13 - 18.27°C, 3.52 - 22.77, 0.04 -9.63 mg l⁻¹である. 高安 (1996) によれば、湖浅部の 底質は中~粗粒砂からなり、しばしばヤマトシジミの 貝殻(片)がみられる. それに対して、湖深部の底質 はしばしば硫化水素臭を伴う有機物に富む泥からな る. また、本研究で開口径 63 µm のふるいで水洗し た堆積物粒子を実体顕微鏡下を予察的に観察した結 果. しばしば大量の珪藻殻が認められた.

野外調査は 2005 年9月22日~10月5日にかけて 行った.サロマ湖では、サロマ湖養殖漁業協同組合 の調査船「みちしお」によって、湖内の86地点(図 1A)で底質・水質調査を行なった(付表1).また、 網走湖27地点(図1B)、能取湖の38地点(図1C)、 藻琴湖の12地点(図1D)、濤沸湖の10地点(図1E) においても、西網走漁業協同組合・網走漁業協同組 合のご協力をいただいて、同様な調査を行った(付表 1).底質調査に際しては、エクマンバージ式採泥器を 用いて表層堆積物を採取し、表層より厚さ約1 cm を、 薬さじを用いてタッパーウェア容器に採取した.なお、 網走湖、能取湖、藻琴湖、濤沸湖では、2005 年に調 査を行った一部の地点(それぞれ3,2,1,1地点)で、 それ以降も同様の手順で試料を追加採取した.

これらの試料を網走市水産科学センターの実験室 に持ち帰り、その一部を、ねじ口式のスチロール管 びん(容量 50 ml)に分取した.分取後、直ちに試料

図1 調査水域の地図と表層堆積物の採取地点:(A) サロマ湖, (B) 網走湖.

Fig. 1 Maps of study area; showing sampling localities: (A) Lake Saroma, (B) Lake Abashiri. Open and filled circles show fixed stations (1 - 77) and supplementary stations (A01 - A24, B01 - B09 and C01 - C06) in Lake Saroma, respectively.

図1 (続き):(C)能取湖,(D)藻琴湖,(E)濤沸湖.

Fig. 1 (Continued) : (C) Lake Notoro, (D) Lake Mokoto and (E) Lake Tofutsu. Open and filled circles show fixed stations (1 - 23) and supplementary stations (B01 – B15) in Lake Notoro, respectively.

の湿潤重量を秤量し、その後冷凍庫で保管した.こ れらの堆積物試料を、島根大学汽水域センターに設 置されている凍結乾燥器を用いて、凍結乾燥させた. 試料の乾燥重量を秤量後、一部を分取して、蛍光 X 線分析用試料とした.これらの試料を、めのう乳鉢 を用いて粉砕した.この粉末試料を、恒温乾燥器を 用いて50℃で乾燥させた後、加圧整形して試料ペレッ トを作成した.なお、湿潤試料中の間隙水に含まれ る塩分を除去する脱塩処理は、今回行なっていない.

この試料ペレットを,島根大学汽水域研究センター 所有のエネルギー分散型蛍光 X 線元素分析装置(堀 場製作所(株)製 MESA-500W)を用いて分析した. 分析は真空条件下で行ない,ターゲットは Rh 管であ る.また,管電圧は 15(軽元素)および 50(重元素) kV であり,分析時間は,それぞれの管電圧で 250 秒 間の計 500 秒間である.

堀場製作所(株) 製分析プログラム MESA-500W を用いて、検量線法によって、11 元素 (ケイ素 (SiO₂)、 アルミニウム (Al₂O₃), ナトリウム (Na₂O), マグネシウ ム (MgO), リン (P2O5), イオウ (S), カリウム (K₂O), カルシウム (CaO), チタン (TiO₂), マンガン (MnO), 鉄(Fe2O3))について、濃度を重量パーセントで定量 した. 濃度の定量に際しては、イオウ以外は酸化物と して表記している.検量線作成に用いた標準試料は 12 個で, 元首都大学東京都市環境学部の福沢仁博士 より,提供いただいたものである.検量線作成にあたっ ては、いずれの元素も一次式による単回帰で作成した. 主要元素に関する標準値と分析値の間の相関係数は, チタンで低いものの (0.20), 他の主要元素で 0.81~ 0.99 であった. イオウは相関係数は比較的高いもの の,線形関係を示さなかった.なお,脱塩処理を行 なっていないため、ナトリウムやマグネシウムの分析値 には, 造岩鉱物のものに加えて, 間隙水中の塩分の ものも含まれている.

サロマ湖と網走湖の主要元素の分析結果について, その傾向を理解するために,Rモード主成分分析を行 なった.分析に際しては,サロマ湖では86 試料と定 量された11元素の重量パーセント,網走湖では30 試 料と定量された11元素の重量パーセントからなるデー タマトリックスを,それぞれ作成した.これらのデー タマトリックスに対して,SYSTAT 社の統計解析プロ グラム SYSTAT 5.2.1を用いて,Rモード主成分分析を, サロマ湖と網走湖ごとに行なった.

結果

蛍光 X 線分析を用いたサロマ湖, 網走湖, 能取 湖,藻琴湖・濤沸湖の表層堆積物における主要11元 素の濃度(wt%)を、付表 2, 3, 4, 5, 6 にそれぞれ示 す. サロマ湖と網走湖の表層堆積物における主要元 素の濃度分布を検討する前に、今回の分析で得られ たイオウの定量分析結果(付表 2,3)は、三瓶ほか (1997) が行った CHNS 元素分析装置による分析結果 と比較して、サロマ湖・網走湖とも概して低いものと なっている. 蛍光 X 線分析の検量線は、いずれの元 素も一次式による単回帰で作成したが、イオウは標準 値と分析値の間で, 濃度に正の対応関係が認められ たものの, 線形関係を認められなかった. そのため, 今回のサロマ湖と網走湖の表層堆積物の蛍光 X 線分 析で,イオウの濃度が低く見積もられた可能性がある. こうした理由として、検量線作成用標準試料として用 いたいくつか試料に含まれるイオウが、硫化物態では なく,硫酸塩態なためである可能性があるという、福沢, 私信). 蛍光 X 線分析によるより正確なイオウの検量 線定量は、今後の検討課題といえるが、濃度の大小 関係を論じることは問題ないと考えて、以下の議論を 行なうものとする.

(1) サロマ湖

サロマ湖における蛍光 X 線分析にもとづく表層 堆積物中の主要元素の濃度に関する平均値は、以 下の通りである:SiO₂ 65.89wt% (48.65 – 77.35wt%); Al₂O₃ 12.66wt% (9.30 – 14.30wt%); Na₂O 6.14% (2.59 – 11.54wt%); MgO 1.82wt% (0.67 – 3.01wt%); P₂O₅ 0.08wt% (0.02 – 0.23wt%); S 0.91wt% (0.69 – 1.40wt%); K₂O 1.54wt% (0.92 – 1.90wt%); CaO 1.62wt% (0.96 – 5.46wt%); TiO₂ 0.28wt% (0.24 – 0.37wt%); MnO 0.05wt% (0.02 – 0.10wt%); Fe₂O₃ 5.68% (2.76 – 9.84wt%).

Rモード主成分分析の結果,第1・2主成分で,全体の分散の約77%を説明できることがわかった.以下,第1・2主成分について論じる.第1主成分は,寄与率が51.62%である.主成分因子負荷量は,SiO2が高い負の値を取るのに対して,Al2O3,S,MgO,Na2O,Fe2O3が高い正の値をとる(図2A).主成分因子評点は、負から正にわたる広い分布を取り(図2C)、負となる地点は水深13mより浅い地点に相当している(図3A).第2主成分は、寄与率が26.26%である.主成分因子負荷量は、CaO,MnO,TiO2が正の値を取る(図2A).主成分因子評点は、水深8m以浅の少数の地

図2 サロマ湖における第1・2 主成分の関係: (A) 因子負荷量と (B) 因子評点; 網走湖における第1・2 主成分の 関係: (C) 因子負荷量と (D) 因子評点.

Fig. 2 Relationship between Principal Component 1 and 2 in Lake Saroma: (A) factor loading and (B) factor score; Relationship between Principal Component 1 and 2 in Lake Abashiri: (C) factor loading and (D) factor score.

点でのみ, 高い正の値を取る (図 2C・3A).

第1主成分のSiO₂と他の元素との関係について は、サロマ湖の表層堆積物の粒度組成(大島ほか、 1966)・含砂率(高安、1996)から判断して、沿岸より の地点では粗粒堆積物粒子に含まれる石英・長石(SiO₂ に富む)の寄与が高く、それに対して沖合の地点で 細粒堆積物粒子に占める粘土鉱物(Al₂O₃に富む)の 寄与が高いと考えることで解釈できる.こうした平面 分布は、Terasaki et al. (2013)のGroup A (organic poor area)とGroup B (organic rich area)とも、大局的に 類似する.加えて、イオウの濃度分布は、主湖盆の深 部で高いことが、大島ほか(1966)、西浜・干川(1992)、 三瓶ほか(1997)によって報告されており、本研究の蛍 光 X 線分析でも同様な傾向が見られる(付表 1).こ のようなイオウの濃度分布は,夏季に主湖盆深部で貧酸素水塊が発達するために(多田・西浜,1988),パ イライト態のイオウが多く形成されること(三瓶ほか, 1997)で解釈できる.したがって,第1主成分は,粗 粒粒子に多く含まれる SiO₂と細粒堆積物粒子に多く 含まれる Al₂O₃, S, Fe₂O₃ の量比を反映しているものと 考えられる.一方,第2主成分は,CaOの主成分因子 負荷量だけでなく濃度も高いことから,軟体動物の殻 (片)などの生物源炭酸塩粒子が多産することを反映 しているものと思われる.

以上のことから, サロマ湖の表層堆積物中の主要 元素の濃度分布は, 大局的に堆積物の粒度を反映し た鉱物組成と湖水の溶存酸素レベルを反映した硫化 物の形成状況, および局地的な生物源炭酸塩粒子の

図3 サロマ湖における水深と(A) 第1主成分・(B) 第2主成分との関係;網走湖における(C) 第1主成分と水 深との関係および(D) 第2主成分と含水率との関係.

Fig. 3 Relationship between water depth and factor scores of (A) Principal Component 1 and (B) Principal Component 2 in Lake Saroma; (C) Relationship between factor score of Principal Component 1 and water depth and (D) relationship between factor score Principle Component 2 and water content in Lake Anashiri.

生産・集積に規定されていると考えられる.

(2) 網走湖

網走湖における蛍光 X 線分析にもとづく表層堆 積物中の主要元素の濃度に関する平均値は、以下 の 通 り で ある:SiO₂ 64.65wt% (57.95 – 68.76wt%); Al₂O₃ 11.81wt% (9.07 – 15.53wt%); Na₂O 6.02% (2.46 – 10.00wt%); MgO 2.13wt% (0.91 – 2.74wt%); P₂O₅ 0.09wt% (0.04 – 0.15wt%); S 1.11wt% (0.68 – 1.31wt%); K₂O 1.21wt% (0.48 – 1.41wt%); CaO 1.83wt% (1.02 – 8.19wt%); TiO₂ 0.29wt% (0.27 – 0.43wt%); MnO 0.06wt% (0.02 – 0.30wt%); Fe₂O₃ 7.42% (6.00 – 9.56wt%).

Rモード主成分分析の結果,第1・2主成分で,全体の分散の約75%を説明できることがわかった.以下,第1・2主成分について論じる.第1主成分は,寄与率が56.89%である.主成分因子負荷量は,CaO,MnO,TiO₂,Al₂O₃,Fe₂O₃が高い負の値を取るのに対し

て、S, MgO, K₂O, P₂O₅ が高い正の値をとる (図 2B). 主成分因子評点は、少数の地点で負に高く(図 2D), それは水深の浅い地点に対応している (図 3C).第2 主成分は、寄与率が18.26%である。多くの元素が比 較的高い主成分因子負荷量を取るが、主成分因子負 荷量は、SiO₂ が負に高い傾向を取るのに対して、Na₂O, MgO が正に高い傾向がある (図 3B).また、主成分 因子評点は、正から負の広い範囲を取る (図 3D).

第1主成分は、CaOの主成分因子負荷量だけでな く濃度も高いことから、軟体動物の殻など生物源炭 酸塩粒子の多産を反映しているものと思われる. この ことは、主成分因子評点が高い地点でヤマトシジミ の貝殻(片)が多く認められることとも調和的である. 一方、イオウの濃度分布は、湖深部で高い傾向があ ることが、三瓶ほか(1997)によって報告されており、 本研究でも同様な傾向が見られる(付表 2). このよう なイオウの濃度分布は、湖深部で貧酸素水塊が発達 するために、パイライト態のイオウが多く形成される

こと (三瓶ほか, 1997) で解釈できる. したがって, 第 1主成分は、浅い地点での生物源炭酸粒子と深い地 点での硫化物の量を反映したものと考えられる. 第2 主成分については,多くの元素で主成分因子負荷量 が高いため、解釈が難しいものの、主成分因子負荷 量が負に高い SiO₂は、陸源砕屑物に加えて網走湖の 表層堆積物に多く認められる珪藻殻にも、多く含まれ るためと考えられる.一方,主成分因子負荷量が正に 高いNa₂Oは、造岩鉱物に含まれるものだけでなく、 間隙水中の塩分にも含まれていると予想される. とく に,今回検討した網走湖の表層堆積物には,含水率 が80%を超えるものも多く、主成分因子評点と含水 率との関係には、弱いながらも正の相関が認められて いる (図 3D). これらのことから、第2主成分はおも に陸源砕屑物または珪藻殻の量と、湿潤試料に含ま れ,乾燥時に析出した塩分を,反映していると思われる.

以上のことから,網走湖の表層堆積物中の主要元 素の濃度分布は,間隙水から晶出したと思われるナト リウムのことを除けば,大局的に湖浅部での生物源 炭酸塩粒子の生産・集積と湖深部での低い溶存酸素 レベルを反映した硫化物の形成状況,および陸源砕 屑物や珪藻殻の寄与によって,規定されていると考え られる.

本研究の蛍光 X 線分析によるサロマ湖・網走湖の 表層堆積物の主要元素組成にもとづいて,堆積物の 粒度組成に対応した鉱物組成の違いや水柱の溶存酸 素レベルの違いを反映した硫化物の形成状況,およ び生物源炭酸塩粒子の生産・集積を,捉える可能性 が示されたと言える.このことは今後,堆積物柱状試 料を用いた古環境解析を行なうにあたり,蛍光 X 線 分析から堆積環境について様々な情報を得られる可 能性を示している.今後,蛍光 X 線分析で用いた同 一試料を用いた粒度分析や粉末 X 線回折分析による 鉱物組成の検討を加えることで,表層堆積物の主要 元素組成の傾向を,さらに詳細に検討する予定である.

謝辞

本報告は、サロマ湖養殖漁業協同組合の委託調査 の一環として、実施したものであり、同組合にはサロ マ湖の野外調査に際して、多大な便宜を計っていた だいた.また、西網走漁業協同組合・網走漁業協同 組合には、網走湖・能取湖・藻琴湖・濤沸湖の野外 調査にご助力いただいた.島根大学の高安克己名誉 教授には、蛍光 X 線分析装置の使用をお許しいただ き、Turku 大学(現 ふじのくに地球環境史ミュージア

ム)の山田和芳博士には、同分析全般にわたってご 指導いただき、また本稿の改良に有益なコメントをい ただいた. 元首都大学東京都市環境学部の福沢仁博 士には同分析の検量線作成にあたって、貴重な標準 試料を提供いただいた. さらに, 島根大学汽水域研 究センターの倉田健吾准教授,同生物資源学部の山 口啓子教授,高知大学海洋コア研究センター(現 島根大学汽水域研究センター)の香月興太博士,島 根大学総合理工学部の中村健作氏と野原かおり氏に は野外調査に、同汽水域研究センターの船来桂子氏 には分析試料の作成に、ご助力いただいた.また、 網走市水産科学センターには、野外調査期間の試料 処理・宿泊に多大な便宜を計っていただいた.加えて、 LAGUNA 編集委員および査読者には、本稿に丁寧な 査読をいただいた.本研究を行うにあたり、サロマ湖 養殖漁業協同組合からの委託研究「北海道サロマ湖 における底質環境に関する研究」、島根大学の「汽水 域の自然・環境再生研究拠点形成プロジェクト|.日 本学術振興会科学研究費補助金(基盤研究 B:研究 課題「海跡湖に記録された小氷期以降の汎世界的な 環境変動と人為的環境変化」)(研究代表者 瀬戸浩 二)の研究費の一部を用いた.以上の方々に心より あつくお礼申し上げます.

引用文献

- 今田和史・坂崎繁樹・川尻敏文・小林耕一(1995)網 走市4湖沼(網走湖, 能取湖, 藻琴湖・濤沸湖) の湖盆形態と塩分環境.北海道水産孵化場研報, 49:37-48.
- 許成基・船木淳悟・岡村眞・松岡裕美・坂本竜彦・鹿 嶋 薫・山辺希世 (2012) 網走湖底質とその縞状構 造について. 地球科学, 66:17–33.
- Katsuki, K. Seto, K., Maekawa, K. and Khim, B.-K. (2009) Effect of human activity on Lake Saroma (Japan) during the past 150 years: Evidence by variation of diatom assemblages. Estuarine, Coastal and Shelf Science, 81: 215–224.
- Katsuki, K., Seto, K., Saito, M., Noguchi, T., Sonoda, T. and Kim, J.-Y. (2012) Paleoecological and paleoenvironmental changes in Lagoon Notoro-Ko (Japan) during the last 200 years based on diatom assemblages and sediment chemistry. Transactions Japanese Geomorphological Union, 33: 197–213.
- 菊池和夫・野沢靖・松本英二(1984) 堆積物からみた サロマ湖の環境変化について. 北水試報, 26:11-24.

- 西浜雄二・干川裕(1992) サロマ湖における底泥の粒 度組成と有機炭素含有率の分布.北水試研報,39: 1–9.
- 仁科健二(2003) サロマ湖湖底に集積する堆積物の 推量.北海道立地質研究所報告,73:205-208.
- 大島和雄・渡辺浩・佐竹俊孝・塩沢孝之・小原昭雄・ 丸邦義(1966) 北海道サロマ湖の生態学的研究~ 形成史と底質について~. 北海道立水産試験場報 告, 6:1-32.
- 三瓶良和・倉門由紀子・清水紋・高安克己・石田聖(1997) サロマ湖・網走湖底質の有機炭素・窒素・イオウ濃度. Researches in Organic Geochemistry, 12:51–60.
- 多田匡秀・西浜雄二 (1988) サロマ湖水質環境調査, 昭和 62 年度北海道網走水試事業報, 209-213.
- 高安克己(1996) 文部省科学研究費補助金(基盤研 究 Al)「海跡湖堆積物からみた汽水域の環境変化 ーその地域性と一般性-」平成7年度報告・資料集. 205p.,島根大学汽水域研究センター.
- Terasaki, E., Morita, K., Yasuda, M., Maekawa, K., Montani, S. (2013) Spatial distribution of phytopigments and organic matter in surface sediments in Lake Saroma Hokkaido, Japan. La Mer, 51: 119–128.
- 安富亮平・今田和史・伊沢敏穂(2000)網走4湖沼の水質の特徴.網走市湖沼環境総合調査成果最終報告所.網走市・東京農業大学編 pp. 50-77,網走市・東京農業大学,網走.

付表1 表層堆積物試料の採取地点

Appendix table 1 Lists of the studied stations in Lake Saorma, Lake Abashiri, Lake Notoro, Lake Mokoto and Lake Tofutsu.

Station	La	titude	Lon	gitude	Station	Lat	itude	Lon	gitude
1	44°	11.338'	143°	43.141'	A01	44°	6.057'	143°	48.955'
2	44°	11.046'	143°	41.424'	A02	44°	6.080'	143°	48.940'
5	44°	10.777'	143°	44.443'	A03	44°	6.113'	143°	48.927'
6	44°	10.645'	143°	45.800'	A04	44°	6.164'	143°	48.900'
7	44°	10.161'	143°	43.156'	A05	44°	8.194'	143°	48.896'
10	44°	10.144'	143°	47.222'	A06	44°	8.223'	143°	48.889'
12	44°	9.665'	143°	44.374'	A07	44°	6.351'	143°	49.033'
16	44°	9.563'	143°	50.254'	A08	44°	6.417'	143°	48.997'
17	44°	9.126'	143°	43.233'	A09	44°	6.577'	143°	48.949'
19	44°	9.129'	143°	45.765'	A10	44°	6.990'	143°	48.848'
20	44°	9.219'	143°	47.442'	A11	44°	7.294'	143°	48.815'
22	44°	9.090'	143°	50.430'	A12	44°	7.686'	143°	48.664'
24	44°	8.817'	143°	43.064'	A13	44°	8.182'	143°	48.682'
29	44°	8.614'	143°	51.744'	A14	44°	8.453'	143°	48.866'
30	44°	8.484'	143°	53.236'	A15	44°	8.717'	143°	48.908'
31	44°	8.158'	143°	44.077'	A16	44°	8.796'	143°	48.744'
33	44°	8.150'	143°	45.734'	A17	44°	9.143'	143°	48.703'
34	44°	8.139'	143°	47.259'	A18	44°	9.424'	143°	48.738'
37	44°	8.084'	143°	51.882'	A19	44°	9.951'	143°	48.731'
38	44°	8.142'	143°	53.231'	A20	44°	9.541'	143°	48.739'
39	44°	8.174'	143°	54.870'	A21	44°	9.622'	143°	48.828'
40	44°	8.104'	143°	56.227'	A22	44°	9.829'	143°	48.847'
41	44°	7.650'	143°	44.522'	A23	44°	9.986'	143°	48.783'
45	44°	7.648'	143°	50.286'	A24	44°	10.041'	143°	48.774'
46	44°	7.486'	143°	51.849'	B01	44°	8.911'	143°	42.958'
47	44°	7.601'	143°	53.125'	B02	44°	8.931'	143°	43.116'
48	44°	7.788'	143°	54.834'	B03	44°	8.941'	143°	43.174'
49	44°	7.571'	143°	56.544'	B04	44°	8.965'	143°	43.288'
50	44°	7.601'	143°	57.642'	B05	44°	7.246'	143°	43.588'
51	44°	7.081'	143°	45.794'	B06	44°	7.236'	143°	43.651'
52	44°	7.189'	143°	47.151'	B07	44°	7.292'	143°	43.757'
55	44°	7.154'	143°	51.555'	B08	44°	7.377'	143°	43.991'
56	44°	7.122'	143°	53.350'	B09	44°	8.79'	143°	43.759'
58	44°	7.145'	143°	56.386'	C01	44°	5.562'	143°	56.167'
69	44°	7.103'	143°	57.411'	C02	44°	5.586'	143°	56.144'
60	44°	6.674'	143°	45.749'	C03	44°	5.614'	143°	56.136'
63	44°	6.671'	143°	50.279'	C04	44°	5.729'	143°	56.079'
64	44°	6.638'	143°	51.777'	C05	44°	5.846'	143°	55.968'
66	44°	6.276'	143°	55.017'	C06	44°	5.927'	143°	55.969'
67	44°	6.600'	143°	56.251'					
68	44°	6.505'	143°	57.121'					
69	44°	6.214'	143°	47.034'					
72	44°	6.046'	143°	55.206'					
73	44°	6.161'	143°	56.065'					
75	44°	7.982'	143°	59.391'					
76	44°	5.660'	143°	56.265'					
77	44°	10.361'	143°	44.559'					

付表1 (続き)

Appendix table 1 (Continued)

Lake Abashiri					Lake Notoro				
Station	Lat	itude	Lon	gitude	Station	Lat	itude	Lon	gitude
1	44°	0.238'	144°	11.771'	1	44°	4.843'	144°	7.657'
2	44°	0.144'	144°	12.752'	2	44°	5.469'	144°	9.237'
3	43°	59.728'	144°	10.730'	3	44°	6.120'	144°	11.227'
4	43°	59.601'	144°	11.788'	4	44°	5.537'	144°	10.875'
5	43°	59.164'	144°	10.243'	5	44°	4.553'	144°	10.776'
6	43°	59.192'	144°	11.226'	6	44°	3.947'	144°	10.659'
7	43°	58.621'	144°	9.767'	7	44°	3.275'	144°	10.151'
8	43°	58.631'	144°	10.756'	8	44°	2.743'	144°	9.466'
9	43°	58.194'	144°	10.772'	9	44°	2.222'	144°	8.969'
10	43°	58.664'	144°	11.788'	10	44°	1.582'	144°	8.112'
11	43°	58.115'	144°	9.422'	11	44°	1.263'	144°	7.156'
12	43°	58.180'	144°	10.249'	12	44°	1.657'	144°	8.782'
13	43°	58.143'	144°	11.235'	13	44°	1.416'	144°	8.957'
14	43°	57.638'	144°	9.772'	14	44°	2.281'	144°	7.703'
15	43°	57.640'	144°	10.747'	15	44°	2.379'	144°	6.909'
16	43°	57.091'	144°	8.247'	16	44°	3.640'	144°	6.953'
17	43°	57.155'	144°	8.745'	17	44°	3.479'	144°	7.732'
18	43°	57.212'	144°	9.499'	18	44°	3.236'	144°	9.335'
19	43°	57.126'	144°	10.221'	19	44°	3.924'	144°	8.184'
20	43°	56.615'	144°	8.211'	20	44°	4.383'	144°	7.950'
21	43°	56.695'	144°	8.760'	21	44°	4.609'	144°	7.816'
22	43°	56.703'	144°	9.975'	22	44°	7.109'	144°	10.869'
23	43°	56.380'	144°	9.910'	23	44°	4.389'	144°	9.210'
24	43°	55.788'	144°	10.198'	B01	44°	2.914'	144°	9.828'
25	43°	56.820'	144°	10.225'	B02	44°	2.789'	144°	9.869'
26	43°	57.643'	144°	11.728'	B03	44°	2.683'	144°	9.879'
27	43°	56.013'	144°	9.819'	B04	44°	2.548'	144°	9.925'
					B05	44°	2.406'	144°	10.008'
					B06	44°	2.314'	144°	10.056'
					B07	44°	2.255'	144°	10.051'
					B08	44°	2.217'	144°	10.103'
					B09	44°	2.165'	144°	10.162'
					B10	44°	2.140'	144°	10.211'
					B11	44°	2.115'	144°	10.201'
					B12	44°	2.106'	144°	10.234'
					B13	44°	2.076'	144°	10.222'

Lake Mokoto					Lake Tofutu				
Station	La	titude	Lon	gitude	Station	La	titude	Lon	gitude
1	43°	57.723'	144°	19.612'	1	43°	55.181'	144°	26.254'
2	43°	57.633'	144°	19.494'	2	43°	55.759'	144°	25.847'
3	43°	57.690'	144°	19.338'	3	43°	56.027'	144°	25.269'
4	43°	57.740'	144°	19.178'	4	43°	56.125'	144°	24.548'
5	43°	57.553'	144°	19.242'	5	43°	56.282'	144°	23.872'
6	43°	57.490'	144°	19.358'	6	43°	56.387'	144°	23.107'
7	43°	57.368'	144°	19.522'	7	43°	56.739'	144°	22.369'
8	43°	57.312'	144°	19.300'	8	43°	56.754'	144°	22.111'
9	43°	57.419'	144°	19.212'	9	43°	56.852'	144°	21.731'
10	43°	57.459'	144°	19.051'	10	43°	56.928'	144°	21.329'
11	43°	57.198'	144°	18.989'					

B14

B15

44°

44°

2.020'

1.946'

144°

144°

10.235'

10.300'

高田裕行・瀬戸浩二・前川公彦・川尻敏文

付表 2 サロマ湖における表層堆積物の主要元素濃度(重量%)

Appendix table 2 Concentration of major elements (weight percent) in surface sediments of Lake Saroma.

1 3.7 7.83 1.16 5.21 1.29 0.07 0.92 1.43 0.96 0.25 0.02 3.16 10.26 2 3.5 67.06 1.227 6.87 1.88 0.08 1.15 1.55 2.50 0.26 0.04 3.86 97.52 5 6.62 7.33 1.027 2.84 0.81 0.04 0.76 1.22 1.49 0.25 0.03 3.34 93.43 7 4.5 66.62 1.82 4.38 0.94 0.04 0.83 1.52 1.14 9.25 0.04 4.38 99.976 6.6 76.32 1.248 1.26 0.06 0.06 1.60 1.77 1.26 0.44 1.46 95.99 17 5.5 62.56 1.342 7.03 2.28 0.06 1.14 1.73 1.18 0.27 0.04 4.59 96.92 10 0.5 67.74 1.27 1.26 1	Station	Depth (m)	SiO ₂	Al ₂ O ₃	Na ₂ O	MgO	P_2O_5	S	K₂O	CaO	TiO ₂	MnO	Fe ₂ O ₃	Total
2 3.5 67.06 12.27 6.87 1.18 0.06 0.82 1.37 3.31 0.26 0.05 3.99 99.76 6 6.66 73.38 10.27 2.84 0.41 0.04 0.83 1.52 1.31 0.25 0.03 3.34 93.43 7 4.5 66.62 10.82 4.38 0.94 0.04 0.83 1.52 1.31 0.25 0.04 2.76 89.52 10 3.5 68.22 9.48 2.59 0.67 0.02 0.69 1.23 1.26 0.04 4.18 99.59 11 6.4 67.65 12.42 5.24 1.23 0.06 0.76 1.77 1.88 0.27 0.04 4.54 9.59 12 5.6 6.33 12.47 4.72 1.28 0.06 1.76 1.71 0.27 0.04 4.51 95.29 13 5.6 6.147 11.74 7.21 1	1	3.7	75.83	11.15	5.21	1.29	0.07	0.92	1.43	0.96	0.25	0.02	3.15	100.28
5 6.3 7.351 1.157 3.63 1.18 0.06 0.22 1.47 3.31 0.26 0.03 3.94 93.43 7 4.5 66.62 1.082 4.38 0.94 0.04 0.83 1.52 1.31 0.25 0.04 3.24 89.52 10 3.5 66.62 1.42 5.24 0.64 0.80 1.60 1.77 0.26 0.05 3.84 94.40 16 6.6 76.32 1.126 3.13 0.92 0.04 0.73 1.44 1.28 0.25 0.04 4.18 95.9 17 5.5 62.66 1.42 4.44 1.36 0.07 0.77 1.88 1.66 0.60 9.113 1.77 1.39 0.27 0.04 4.79 9.84 124 1.24 4.47 1.28 0.06 0.76 1.77 1.39 0.27 0.04 4.69 9.14 124 1.67 6.	2	3.5	67.06	12.27	6.87	1.88	0.08	1.15	1.55	2.50	0.26	0.04	3.86	97.52
6 6.6 7.23 10.27 2.84 0.84 0.04 0.76 1.22 1.49 0.25 0.03 3.34 93.43 7 4.5 66.62 10.82 4.38 0.94 0.04 0.83 1.52 1.31 0.25 0.04 2.78 89.52 10 3.5 68.22 5.24 1.23 0.06 0.80 1.60 1.77 0.25 0.04 4.81 9.99 15 62.56 11.44 1.34 1.38 0.27 0.04 4.59 96.59 10 3 70.79 1.267 4.72 1.28 0.06 0.76 1.77 1.39 0.27 0.04 4.59 96.69 10 5 67.74 1.27 5.21 1.48 0.06 0.76 1.77 1.90 0.44 6.69 96.14 24 4.7 60.60 1.323 8.17 0.33 1.47 1.49 0.24 0.04 6.59<	5	6.3	73.51	11.57	3.63	1.18	0.06	0.82	1.37	3.31	0.26	0.05	3.99	99.76
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	6.6	72.38	10.27	2.84	0.81	0.04	0.76	1.22	1.49	0.25	0.03	3.34	93.43
10 3.5 68.22 9.48 2.59 0.67 0.02 0.69 1.23 1.29 0.24 0.04 3.22 87.69 12 6.4 67.65 12.42 5.24 1.23 0.06 0.80 1.60 1.77 0.26 0.05 3.88 94.44 16 6.6 76.32 1.26 1.30 0.92 0.04 0.73 1.44 1.28 0.25 0.04 4.79 95.42 10.5 67.74 12.67 4.72 1.28 0.06 0.76 1.51 0.27 0.04 4.60 86.19 29 5.8 61.47 12.67 4.72 1.28 0.06 1.76 1.51 0.27 0.04 4.60 86.99 30 4.3 77.35 9.93 2.84 0.81 0.69 1.34 1.76 0.24 0.04 4.68 89.74 31 1.3.3 73.88 9.30 2.96 0.70 0.83	7	4.5	66.62	10.82	4.38	0.94	0.04	0.83	1.52	1.31	0.25	0.04	2.76	89.52
12 6.4 67.65 12.42 5.24 1.23 0.06 0.80 1.60 1.77 0.26 0.05 3.88 94.94 16 6.6 76.32 11.26 3.13 0.92 0.04 0.73 1.44 1.28 0.25 0.04 4.18 99.59 19 9.0 68.31 12.48 4.94 1.36 0.07 0.77 1.68 1.66 0.26 0.04 4.54 96.09 10.3 70.79 12.67 4.72 1.28 0.06 0.76 1.77 1.51 0.27 0.04 4.59 96.09 124 4.7 60.60 13.23 8.17 2.39 0.09 1.13 1.70 1.17 0.28 0.04 4.68 89.74 31 4.4 4.94 1.318 6.11 1.89 0.70 0.83 1.69 1.12 0.28 0.04 5.81 96.72 34 16.6.02 13.35 6.04	10	3.5	68.22	9.48	2.59	0.67	0.02	0.69	1.23	1.29	0.24	0.04	3.22	87.69
16 6.6 76.32 11.26 3.13 0.92 0.04 0.73 1.44 1.28 0.25 0.04 4.18 95.9 17 5.5 62.56 13.42 7.03 2.28 0.08 1.14 1.73 1.18 0.27 0.04 4.59 95.32 19 90 68.31 1.248 4.84 1.36 0.07 0.77 1.68 1.66 0.26 0.04 4.79 98.54 20 10.5 67.74 1.27 5.21 1.48 0.08 0.27 0.04 4.79 98.54 29 5.8 61.47 11.74 4.85 1.57 0.07 0.83 1.47 1.19 0.26 0.04 4.60 98.03 30 4.3 77.35 9.93 2.84 0.81 0.07 0.83 1.47 1.02 0.04 0.64 99.72 31 12.3 73.89 2.93 2.44 0.90 0.70 <th< td=""><td>12</td><td>6.4</td><td>67.65</td><td>12.42</td><td>5.24</td><td>1.23</td><td>0.06</td><td>0.80</td><td>1.60</td><td>1.77</td><td>0.26</td><td>0.05</td><td>3.88</td><td>94.94</td></th<>	12	6.4	67.65	12.42	5.24	1.23	0.06	0.80	1.60	1.77	0.26	0.05	3.88	94.94
17 5.5 62.56 13.42 7.03 2.28 0.08 1.14 1.73 1.18 0.27 0.04 5.59 95.32 19 9.0 68.31 12.48 4.94 1.36 0.07 1.68 1.66 0.26 0.04 4.79 98.54 20 10.5 67.74 12.77 5.21 1.48 0.08 0.82 1.57 1.51 0.27 0.04 4.69 98.54 24 4.7 60.60 13.23 8.17 2.39 0.09 1.13 1.70 1.77 0.28 0.04 4.66 88.09 30 4.3 77.35 9.93 2.84 0.81 0.70 0.83 1.47 1.24 0.04 4.68 99.74 31 12.3 73.88 9.30 2.86 0.79 0.44 0.70 1.08 1.67 1.12 0.28 0.04 5.81 95.29 31 13.4 64.94 13.18	16	6.6	76.32	11.26	3.13	0.92	0.04	0.73	1.44	1.28	0.25	0.04	4.18	99.59
19 9.0 68.31 12.48 4.94 1.36 0.07 0.77 1.68 1.66 0.26 0.04 4.54 96.09 20 10.3 70.79 12.67 4.72 1.28 0.06 0.76 1.77 1.39 0.27 0.04 4.79 98.54 21 15.6 67.74 12.7 5.21 1.48 0.08 1.57 1.51 0.27 0.04 6.51 95.29 29 5.8 61.47 11.74 4.85 1.57 0.07 0.83 1.47 1.19 0.26 0.04 4.68 99.74 31 13.4 64.94 13.18 6.11 1.89 0.07 0.89 1.66 1.10 0.27 0.04 5.58 95.72 34 16.7 65.02 13.35 6.04 1.97 0.80 1.60 1.00 0.26 0.04 5.33 96.22 36 15.6 64.19 12.99 7.02	17	5.5	62.56	13.42	7.03	2.28	0.08	1.14	1.73	1.18	0.27	0.04	5.59	95.32
20 10.3 70.79 12.67 4.72 1.28 0.06 0.76 1.77 1.39 0.27 0.04 4.79 98.54 22 10.5 67.74 12.77 5.21 1.48 0.08 0.52 1.57 1.51 0.27 0.05 4.60 98.11 24 4.7 60.60 13.23 8.17 2.39 0.09 1.13 1.70 1.17 0.28 0.04 4.60 88.09 30 4.3 77.35 9.93 2.84 0.81 0.05 0.69 1.34 1.76 0.24 0.04 4.68 99.74 31 12.3 73.88 9.30 2.96 0.79 0.04 0.70 1.08 1.71 0.24 0.04 5.81 96.29 34 16.6 65.02 1.35 6.04 1.97 0.08 0.88 1.69 1.10 0.24 0.04 5.84 96.33 37 14.9 62.52	19	9.0	68.31	12.48	4.94	1.36	0.07	0.77	1.68	1.66	0.26	0.04	4.54	96.09
22 10.5 67.74 12.77 5.21 1.48 0.08 0.82 1.57 1.51 0.27 0.05 4.60 96.11 24 4.7 60.60 13.23 8.17 2.39 0.09 1.13 1.70 1.17 0.28 0.04 4.60 88.09 30 4.3 77.55 9.93 2.84 0.81 0.05 0.69 1.34 1.76 0.24 0.04 4.68 99.74 31 12.3 73.88 9.30 2.96 0.79 0.04 0.70 1.08 1.171 0.24 0.04 5.58 95.72 34 16.7 65.02 13.25 6.04 1.97 0.08 8.86 1.07 0.26 0.04 5.33 96.62 37 14.9 62.52 12.67 9.63 2.66 0.08 1.07 1.55 1.26 0.027 0.04 5.33 96.62 38 15.6 64.13 12.45	20	10.3	70.79	12.67	4.72	1.28	0.06	0.76	1.77	1.39	0.27	0.04	4.79	98.54
24 4.7 60.60 13.23 8.17 2.39 0.09 1.13 1.70 1.17 0.28 0.04 6.51 95.29 29 5.8 61.47 11.74 4.85 1.57 0.07 0.83 1.47 1.19 0.24 0.04 4.60 88.09 30 4.3 77.35 9.30 2.84 0.81 0.05 0.69 1.34 1.76 0.24 0.04 4.60 89.09 31 13.4 64.94 13.18 6.11 1.89 0.07 0.89 1.66 1.10 0.27 0.04 5.58 95.72 34 16.7 65.02 13.35 6.04 1.97 0.08 0.88 1.69 1.12 0.28 0.04 5.81 96.29 35 13.6 63.04 12.97 7.63 2.26 0.08 1.07 1.55 1.26 0.28 0.05 5.84 96.03 40 9.2 61.13	22	10.5	67.74	12.77	5.21	1.48	0.08	0.82	1.57	1.51	0.27	0.05	4.60	96.11
29 5.8 61.47 11.74 4.85 1.57 0.07 0.83 1.47 1.19 0.26 0.04 4.60 88.09 30 4.3 77.35 9.93 2.84 0.81 0.05 0.69 1.34 1.76 0.24 0.04 4.68 99.74 33 13.4 64.94 13.18 6.11 1.89 0.07 0.049 1.66 1.10 0.27 0.04 5.81 96.29 34 16.7 65.02 13.35 6.04 1.97 0.08 0.88 1.69 1.12 0.28 0.04 5.81 96.29 37 14.9 62.22 12.67 9.65 2.40 0.07 1.09 1.53 1.07 0.26 0.04 5.83 96.33 38 15.6 64.19 12.97 7.63 2.26 0.08 1.07 1.55 1.20 0.27 0.04 5.32 96.33 41 18.7 64.00	24	4.7	60.60	13.23	8.17	2.39	0.09	1.13	1.70	1.17	0.28	0.04	6.51	95.29
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	29	5.8	61.47	11.74	4.85	1.57	0.07	0.83	1.47	1.19	0.26	0.04	4.60	88.09
31 12.3 73.88 9.30 2.96 0.79 0.04 0.70 1.08 1.71 0.24 0.06 2.99 93.74 33 13.4 6.49 13.18 6.11 1.89 0.07 0.89 1.66 1.10 0.27 0.04 5.58 95.72 34 16.7 65.02 13.35 6.04 1.97 0.08 0.88 1.69 1.12 0.28 0.04 5.81 96.29 37 14.9 62.52 12.67 9.65 2.40 0.07 1.09 1.53 1.07 0.26 0.04 5.83 96.62 38 15.6 64.19 12.97 7.63 2.26 0.08 1.07 1.55 1.26 0.28 0.05 5.84 96.33 40 9.2 61.13 12.45 7.94 2.18 0.09 0.99 1.49 3.92 0.27 0.04 5.36 96.33 41 18.7 64.00 13.52 5.78 2.13 0.08 0.88 1.75 1.03 0.28 <t< td=""><td>30</td><td>4.3</td><td>77.35</td><td>9.93</td><td>2.84</td><td>0.81</td><td>0.05</td><td>0.69</td><td>1.34</td><td>1.76</td><td>0.24</td><td>0.04</td><td>4.68</td><td>99.74</td></t<>	30	4.3	77.35	9.93	2.84	0.81	0.05	0.69	1.34	1.76	0.24	0.04	4.68	99.74
33 13.4 64.94 13.18 6.11 1.89 0.07 0.89 1.66 1.10 0.27 0.04 5.58 95.72 34 16.7 65.02 13.35 6.04 1.97 0.08 0.88 1.69 1.12 0.28 0.04 5.81 96.29 37 14.9 62.52 12.67 9.65 2.40 0.07 1.09 1.53 1.07 0.26 0.04 5.33 96.62 38 15.6 64.19 12.99 7.63 2.26 0.08 1.07 1.55 1.26 0.28 0.05 5.84 96.03 40 9.2 61.13 12.45 7.94 2.18 0.09 0.91 1.49 3.92 0.27 0.04 5.36 96.33 41 18.7 64.00 13.52 5.78 2.13 0.08 0.88 1.75 1.03 0.27 0.04 5.36 96.22 46 18.6 62.20 12.82 9.21 2.57 0.08 1.10 1.56 1.03 0.27	31	12.3	73.88	9.30	2.96	0.79	0.04	0.70	1.08	1.71	0.24	0.06	2.99	93.74
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	33	13.4	64.94	13.18	6.11	1.89	0.07	0.89	1.66	1.10	0.27	0.04	5.58	95.72
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	34	16.7	65.02	13.35	6.04	1.97	0.08	0.88	1.69	1.12	0.28	0.04	5.81	96.29
38 15.6 64.19 12.99 7.20 2.12 0.09 1.00 1.60 1.20 0.27 0.04 5.62 96.30 39 13.6 63.04 12.97 7.63 2.26 0.08 1.07 1.55 1.26 0.28 0.05 5.84 96.03 40 9.2 61.13 12.45 7.94 2.18 0.09 0.99 1.49 3.92 0.27 0.05 5.82 96.33 41 18.7 64.00 13.52 5.78 2.13 0.08 0.88 1.75 1.03 0.28 0.04 6.32 95.81 45 18.5 61.49 12.51 10.07 2.65 0.12 1.13 1.50 1.027 0.04 5.36 96.22 46 18.6 62.20 12.82 9.21 2.51 0.14 1.04 1.55 1.15 0.27 0.04 3.11 98.80 49 6.3 62.73 13.50	37	14.9	62.52	12.67	9.65	2.40	0.07	1.09	1.53	1.07	0.26	0.04	5.33	96.62
39 13.6 63.04 12.97 7.63 2.26 0.08 1.07 1.55 1.26 0.28 0.05 5.84 96.03 40 9.2 61.13 12.45 7.94 2.18 0.09 0.99 1.49 3.92 0.27 0.05 5.82 96.33 41 18.7 64.00 13.52 5.78 2.13 0.08 0.88 1.75 1.03 0.28 0.04 6.32 95.81 45 18.5 61.49 12.51 10.07 2.65 0.12 1.13 1.50 1.09 0.27 0.04 5.36 96.22 46 18.6 62.32 12.82 9.21 2.51 0.14 1.04 1.55 1.15 0.27 0.03 5.66 96.68 47 6.3 62.73 13.50 6.72 2.24 0.80 1.59 1.35 0.29 0.05 6.73 96.27 50 8.7 75.87 10.22	38	15.6	64.19	12.99	7.20	2.12	0.09	1.00	1.60	1.20	0.27	0.04	5.62	96.30
40 9.2 61.13 12.45 7.94 2.18 0.09 0.99 1.49 3.92 0.27 0.05 5.82 96.33 41 18.7 64.00 13.52 5.78 2.13 0.08 0.88 1.75 1.03 0.28 0.04 6.32 95.81 45 18.5 61.49 12.51 10.07 2.65 0.12 1.13 1.50 1.09 0.27 0.04 5.36 96.22 46 18.6 62.32 12.82 9.21 2.51 0.14 1.04 1.55 1.15 0.27 0.04 5.36 96.33 47 3.6 62.50 12.82 9.21 2.51 0.14 1.04 1.55 1.15 0.27 0.03 5.66 96.68 48 12.6 76.23 10.59 3.87 0.79 0.04 0.73 1.16 1.96 0.27 0.04 3.11 98.97 50 6.37 13.37	39	13.6	63.04	12.97	7.63	2.26	0.08	1.07	1.55	1.26	0.28	0.05	5.84	96.03
41 18.7 64.00 13.52 5.78 2.13 0.08 0.88 1.75 1.03 0.28 0.04 6.32 95.81 45 18.5 61.49 12.51 10.07 2.65 0.12 1.13 1.50 1.09 0.27 0.04 5.36 96.22 46 18.6 62.32 12.82 9.01 2.57 0.08 1.10 1.56 1.03 0.27 0.03 5.50 96.31 47 3.6 62.50 12.82 9.21 2.51 0.14 1.04 1.55 1.15 0.27 0.03 5.64 96.68 48 12.6 76.23 10.59 3.87 0.79 0.04 0.73 1.16 1.96 0.27 0.04 3.11 98.80 49 6.3 62.73 13.50 6.72 2.24 0.08 0.98 1.59 1.35 0.29 0.05 6.73 96.27 50 8.7 75.87 10.22 3.32 1.07 0.50 0.77 1.40 1.71 0.25 <	40	9.2	61.13	12.45	7.94	2.18	0.09	0.99	1.49	3.92	0.27	0.05	5.82	96.33
45 18.5 61.49 12.51 10.07 2.65 0.12 1.13 1.50 1.09 0.27 0.04 5.36 96.22 46 18.6 62.32 12.82 9.01 2.57 0.08 1.10 1.56 1.03 0.27 0.03 5.50 96.31 47 3.6 62.50 12.82 9.21 2.51 0.14 1.04 1.55 1.15 0.27 0.03 5.46 96.68 48 12.6 76.23 10.59 3.87 0.79 0.04 0.73 1.16 1.96 0.27 0.04 3.11 98.80 49 6.3 62.73 13.50 6.72 2.24 0.08 0.98 1.59 1.35 0.29 0.05 6.73 96.27 50 8.7 75.87 10.22 3.32 1.07 0.05 0.77 1.40 1.71 0.25 0.04 4.28 98.97 51 12.0 63.75 13.37 6.71 2.02 0.07 0.89 1.68 1.24 0.28 <	41	18.7	64.00	13.52	5.78	2.13	0.08	0.88	1.75	1.03	0.28	0.04	6.32	95.81
46 18.6 62.32 12.82 9.01 2.57 0.08 1.10 1.56 1.03 0.27 0.03 5.50 96.31 47 3.6 62.50 12.82 9.21 2.51 0.14 1.04 1.55 1.15 0.27 0.03 5.46 96.68 48 12.6 76.23 10.59 3.87 0.79 0.04 0.73 1.16 1.96 0.27 0.04 3.11 98.80 49 6.3 62.73 13.50 6.72 2.24 0.08 0.98 1.59 1.35 0.29 0.05 6.73 96.27 50 8.7 75.87 10.22 3.32 1.07 0.05 0.77 1.40 1.71 0.25 0.04 4.28 98.97 51 12.0 63.75 13.37 6.71 2.02 0.07 0.89 1.68 1.24 0.28 0.04 6.14 95.65 56 64.61.44 12.60	45	18.5	61.49	12.51	10.07	2.65	0.12	1.13	1.50	1.09	0.27	0.04	5.36	96.22
47 3.6 62.50 12.82 9.21 2.51 0.14 1.04 1.55 1.15 0.27 0.03 5.46 96.68 48 12.6 76.23 10.59 3.87 0.79 0.04 0.73 1.16 1.96 0.27 0.04 3.11 98.80 49 6.3 62.73 13.50 6.72 2.24 0.08 0.98 1.59 1.35 0.29 0.05 6.73 96.27 50 8.7 75.87 10.22 3.32 1.07 0.05 0.77 1.40 1.71 0.25 0.04 4.28 98.97 51 12.0 63.75 13.37 6.71 2.02 0.07 0.89 1.68 1.25 0.28 0.05 6.08 96.14 52 6.4 61.44 12.60 9.08 2.38 0.13 1.01 1.57 1.23 0.27 0.03 5.78 95.53 56 12.3 70.81 11.28 3.77 0.85 0.06 0.72 1.33 1.63 0.24 <td< td=""><td>46</td><td>18.6</td><td>62.32</td><td>12.82</td><td>9.01</td><td>2.57</td><td>0.08</td><td>1.10</td><td>1.56</td><td>1.03</td><td>0.27</td><td>0.03</td><td>5.50</td><td>96.31</td></td<>	46	18.6	62.32	12.82	9.01	2.57	0.08	1.10	1.56	1.03	0.27	0.03	5.50	96.31
48 12.6 76.23 10.59 3.87 0.79 0.04 0.73 1.16 1.96 0.27 0.04 3.11 98.80 49 6.3 62.73 13.50 6.72 2.24 0.08 0.98 1.59 1.35 0.29 0.05 6.73 96.27 50 8.7 75.87 10.22 3.32 1.07 0.05 0.77 1.40 1.71 0.25 0.04 4.28 98.97 51 12.0 63.75 13.37 6.71 2.02 0.07 0.89 1.68 1.25 0.28 0.05 6.08 96.14 52 17.9 63.38 13.22 6.97 2.03 0.06 0.93 1.60 1.21 0.28 0.04 6.14 95.86 55 6.4 61.44 12.60 9.08 2.38 0.13 1.01 1.57 1.23 0.27 0.03 5.78 95.53 56 12.3 70.81 11.28 3.77 0.85 0.06 0.72 1.33 1.63 0.24 <t< td=""><td>47</td><td>3.6</td><td>62.50</td><td>12.82</td><td>9.21</td><td>2.51</td><td>0.14</td><td>1.04</td><td>1.55</td><td>1.15</td><td>0.27</td><td>0.03</td><td>5.46</td><td>96.68</td></t<>	47	3.6	62.50	12.82	9.21	2.51	0.14	1.04	1.55	1.15	0.27	0.03	5.46	96.68
49 6.3 62.73 13.50 6.72 2.24 0.08 0.98 1.59 1.35 0.29 0.05 6.73 96.27 50 8.7 75.87 10.22 3.32 1.07 0.05 0.77 1.40 1.71 0.25 0.04 4.28 98.97 51 12.0 63.75 13.37 6.71 2.02 0.07 0.89 1.68 1.25 0.28 0.04 4.28 98.97 51 12.0 63.75 13.37 6.71 2.02 0.07 0.89 1.68 1.25 0.28 0.04 6.14 95.86 55 6.4 61.44 12.60 9.08 2.38 0.13 1.01 1.57 1.23 0.27 0.03 5.78 95.53 56 12.3 70.81 11.28 3.77 0.85 0.06 0.72 1.32 2.59 0.30 0.06 6.84 95.51 56 70.62 10.41 3.69 0.80 0.05 0.72 1.33 1.63 0.24 0.05 <t< td=""><td>48</td><td>12.6</td><td>76.23</td><td>10.59</td><td>3.87</td><td>0.79</td><td>0.04</td><td>0.73</td><td>1.16</td><td>1.96</td><td>0.27</td><td>0.04</td><td>3.11</td><td>98.80</td></t<>	48	12.6	76.23	10.59	3.87	0.79	0.04	0.73	1.16	1.96	0.27	0.04	3.11	98.80
10 0.10 0.11 0.10 0.10 0.10 0.10 0.10 0.10 0.11 0.11 0.11 0.11 0.12 0.04 4.28 98.97 51 12.0 63.75 13.37 6.71 2.02 0.07 0.89 1.68 1.25 0.28 0.05 6.08 96.14 52 17.9 63.38 13.22 6.97 2.03 0.06 0.93 1.60 1.21 0.28 0.04 6.14 95.86 55 6.4 61.44 12.60 9.08 2.38 0.13 1.01 1.57 1.23 0.27 0.03 5.78 95.53 56 12.3 70.81 11.28 3.77 0.85 0.06 0.72 1.32 2.59 0.30 0.06 6.84 95.51 56 61.56 12.98 7.58 2.29 0.11 0.95 1.54 1.33 0.29 0.06 6.84 95.51 60 11.5 65.26 13.39 5.76 1.75 0.08 0.88 1.68 <t< td=""><td>49</td><td>6.3</td><td>62 73</td><td>13 50</td><td>6 72</td><td>2 24</td><td>0.08</td><td>0.98</td><td>1 59</td><td>1.35</td><td>0.29</td><td>0.05</td><td>6 73</td><td>96.27</td></t<>	49	6.3	62 73	13 50	6 72	2 24	0.08	0.98	1 59	1.35	0.29	0.05	6 73	96.27
51 12.0 63.75 13.37 6.71 2.02 0.07 0.89 1.68 1.25 0.28 0.05 6.08 96.14 52 17.9 63.38 13.22 6.97 2.03 0.06 0.93 1.60 1.21 0.28 0.04 6.14 95.86 55 6.4 61.44 12.60 9.08 2.38 0.13 1.01 1.57 1.23 0.27 0.03 5.78 95.53 56 12.3 70.81 11.28 3.77 0.85 0.06 0.72 1.32 2.59 0.30 0.06 4.65 96.41 58 5.6 61.56 12.98 7.58 2.29 0.11 0.95 1.54 1.33 0.29 0.06 6.84 95.51 69 5.6 70.62 10.41 3.69 0.80 0.05 0.72 1.33 1.63 0.24 0.05 4.21 93.75 60 11.5 65.26 13.39 5.76 1.75 0.08 0.88 1.68 1.44 0.28 <t< td=""><td>50</td><td>8.7</td><td>75.87</td><td>10.00</td><td>3 32</td><td>1 07</td><td>0.05</td><td>0.77</td><td>1 40</td><td>1 71</td><td>0.25</td><td>0.04</td><td>4 28</td><td>98.97</td></t<>	50	8.7	75.87	10.00	3 32	1 07	0.05	0.77	1 40	1 71	0.25	0.04	4 28	98.97
51 12.5 60.10 10.01 51.1 21.02 0.03 1.03 11.25 0.135 0.04 0.05 0.055 0.30 0.06 0.04 5.54 96.11 58 5.6 70.62 10.41 3.69 0.80 0.07 1	51	12.0	63 75	13.37	6 71	2.02	0.07	0.89	1.10	1.25	0.28	0.05	6.08	96 14
55 6.4 61.44 12.60 9.08 2.38 0.13 1.01 1.57 1.23 0.27 0.03 5.78 95.53 56 12.3 70.81 11.28 3.77 0.85 0.06 0.72 1.32 2.59 0.30 0.06 4.65 96.41 58 5.6 61.56 12.98 7.58 2.29 0.11 0.95 1.54 1.33 0.29 0.06 6.84 95.51 69 5.6 70.62 10.41 3.69 0.80 0.05 0.72 1.33 1.63 0.24 0.05 4.21 93.75 60 11.5 65.26 13.39 5.76 1.75 0.08 0.88 1.68 1.44 0.28 0.04 5.54 96.11 63 8.3 62.15 13.43 5.55 1.83 0.09 0.97 1.53 1.29 0.29 0.06 6.13 93.31 64 4.3 66.57 13.66 3.98 1.24 0.08 0.79 1.74 1.50 0.31	52	17.9	63.38	13.22	6 97	2.02	0.06	0.93	1.60	1.20	0.28	0.00	6 14	95.86
56 11.1 11.28 5.56 12.3 70.81 11.28 3.77 0.85 0.06 0.72 1.32 2.59 0.30 0.06 4.65 96.41 58 5.6 61.56 12.98 7.58 2.29 0.11 0.95 1.54 1.33 0.29 0.06 6.84 95.51 69 5.6 70.62 10.41 3.69 0.80 0.05 0.72 1.33 1.63 0.24 0.05 4.21 93.75 60 11.5 65.26 13.39 5.76 1.75 0.08 0.88 1.68 1.44 0.28 0.04 5.54 96.11 63 8.3 62.15 13.43 5.55 1.83 0.09 0.97 1.53 1.29 0.29 0.06 6.13 93.31 64 4.3 66.57 13.66 3.98 1.24 0.08 0.79 1.74 1.50 0.31 0.04 7.04 96.95 66 5.4 63.65 14.19 7.55 2.97 0.14 1.10 <td< td=""><td>55</td><td>6.4</td><td>61 44</td><td>12 60</td><td>9.08</td><td>2.38</td><td>0.00</td><td>1 01</td><td>1.00</td><td>1.21</td><td>0.20</td><td>0.03</td><td>5 78</td><td>95.53</td></td<>	55	6.4	61 44	12 60	9.08	2.38	0.00	1 01	1.00	1.21	0.20	0.03	5 78	95.53
56 11.2.5 10.61 11.2.5 5.11 5.05 5.06 5.12 1.02 2.05 5.06 5.51	56	12.3	70.81	11 28	3 77	0.85	0.10	0.72	1.07	2 59	0.27	0.06	4 65	96.41
69 5.6 70.62 10.41 3.69 0.80 0.05 0.72 1.33 1.63 0.24 0.05 4.21 93.75 60 11.5 65.26 13.39 5.76 1.75 0.08 0.88 1.68 1.44 0.28 0.04 5.54 96.11 63 8.3 62.15 13.43 5.55 1.83 0.09 0.97 1.53 1.29 0.29 0.06 6.13 93.31 64 4.3 66.57 13.66 3.98 1.24 0.08 0.79 1.74 1.50 0.31 0.04 7.04 96.95 66 5.4 63.65 14.19 7.55 2.97 0.14 1.10 1.67 1.50 0.29 0.05 6.28 99.39 67 12.1 60.37 12.86 7.93 2.38 0.10 0.95 1.52 1.33 0.29 0.06 6.96 94.73 68 4.7 75.23 11.22 3.41 1.08 0.08 0.72 1.36 1.59 0.27	58	5.6	61.56	12.98	7.58	2 29	0.00	0.95	1.52	1.33	0.00	0.06	6 84	95.51
60 10.0 <	69	5.6	70.62	10.41	3 69	0.80	0.05	0.00	1.01	1.60	0.20	0.00	4 21	93.75
63 8.3 62.15 13.43 5.55 1.83 0.09 0.97 1.53 1.29 0.29 0.06 6.13 93.31 64 4.3 66.57 13.66 3.98 1.24 0.08 0.79 1.74 1.50 0.31 0.04 7.04 96.95 66 5.4 63.65 14.19 7.55 2.97 0.14 1.10 1.67 1.50 0.29 0.06 6.13 93.31 67 12.1 60.37 12.86 7.93 2.38 0.10 0.95 1.52 1.33 0.29 0.06 6.96 94.73 68 4.7 75.23 11.22 3.41 1.08 0.08 0.72 1.36 1.59 0.27 0.06 4.59 99.60 69 7.9 61.84 13.36 6.31 2.08 0.07 1.08 1.58 1.24 0.28 0.05 5.83 93.72 72 5.4 62.52 13.15 7.16 2.11 0.08 0.99 1.58 1.40 0.29 0	60	11.5	65.26	13.39	5.00	1 75	0.08	0.88	1.68	1.00	0.21	0.00	5 54	96 11
64 4.3 66.57 13.66 3.98 1.24 0.08 0.79 1.74 1.50 0.31 0.04 7.04 96.95 66 5.4 63.65 14.19 7.55 2.97 0.14 1.10 1.67 1.50 0.29 0.05 6.28 99.39 67 12.1 60.37 12.86 7.93 2.38 0.10 0.95 1.52 1.33 0.29 0.06 6.96 94.73 68 4.7 75.23 11.22 3.41 1.08 0.08 0.72 1.36 1.59 0.27 0.06 4.59 99.60 69 7.9 61.84 13.36 6.31 2.08 0.07 1.08 1.58 1.24 0.28 0.05 5.83 93.72 72 5.4 62.52 13.15 7.16 2.11 0.08 0.99 1.58 1.40 0.29 0.05 6.15 95.47 73 11.4 60.90 13.27 7.02 2.31 0.09 0.93 1.58 1.43 0.29	63	83	62 15	13.00	5 55	1.70	0.00	0.00	1.00	1.11	0.20	0.06	6 13	93 31
66 5.4 63.65 14.19 7.55 2.97 0.14 1.10 1.67 1.50 0.29 0.05 6.28 99.39 67 12.1 60.37 12.86 7.93 2.38 0.10 0.95 1.52 1.33 0.29 0.06 6.96 94.73 68 4.7 75.23 11.22 3.41 1.08 0.08 0.72 1.36 1.59 0.27 0.06 4.59 99.60 69 7.9 61.84 13.36 6.31 2.08 0.07 1.08 1.58 1.24 0.28 0.05 5.83 93.72 72 5.4 62.52 13.15 7.16 2.11 0.08 0.99 1.58 1.40 0.29 0.05 6.15 95.47 73 11.4 60.90 13.27 7.02 2.31 0.09 0.93 1.58 1.43 0.29 0.05 7.17 95.05 75 3.6 48.65 12.89 11.54 2.55 0.23 1.40 0.92 1.48 0.25 <td< td=""><td>64</td><td>4 3</td><td>66 57</td><td>13.66</td><td>3.08</td><td>1.00</td><td>0.00</td><td>0.79</td><td>1.00</td><td>1.20</td><td>0.20</td><td>0.00</td><td>7 04</td><td>96.95</td></td<>	64	4 3	66 57	13.66	3.08	1.00	0.00	0.79	1.00	1.20	0.20	0.00	7 04	96.95
67 12.1 60.37 12.86 7.93 2.38 0.10 0.95 1.52 1.33 0.29 0.06 6.96 94.73 68 4.7 75.23 11.22 3.41 1.08 0.08 0.72 1.36 1.59 0.27 0.06 6.96 94.73 69 7.9 61.84 13.36 6.31 2.08 0.07 1.08 1.58 1.24 0.28 0.05 5.83 93.72 72 5.4 62.52 13.15 7.16 2.11 0.08 0.99 1.58 1.40 0.29 0.05 6.15 95.47 73 11.4 60.90 13.27 7.02 2.31 0.09 0.93 1.58 1.43 0.29 0.05 7.17 95.05 75 3.6 48.65 12.89 11.54 2.55 0.23 1.40 0.92 1.48 0.25 0.05 9.84 89.79	+0 66	J 5./	63.65	1/ 10	7 55	2 97	0.00	1 10	1.74	1.50	0.01	0.04	6.28	00.00 00 30
68 4.7 75.23 11.22 3.41 1.08 0.08 0.72 1.36 1.59 0.27 0.06 4.59 99.60 69 7.9 61.84 13.36 6.31 2.08 0.07 1.08 1.58 1.24 0.28 0.05 5.83 93.72 72 5.4 62.52 13.15 7.16 2.11 0.08 0.99 1.58 1.40 0.29 0.05 6.15 95.47 73 11.4 60.90 13.27 7.02 2.31 0.09 0.93 1.58 1.43 0.29 0.05 7.17 95.05 75 3.6 48.65 12.89 11.54 2.55 0.23 1.40 0.92 1.48 0.25 0.05 9.84 89.79	67	12 1	60.37	12.86	7.03	2.37	0.14	0.95	1.07	1.30	0.25	0.00	6.96	01.00 01.73
69 7.9 61.84 13.36 6.31 2.08 0.07 1.08 1.58 1.24 0.28 0.05 5.83 93.72 72 5.4 62.52 13.15 7.16 2.11 0.08 0.99 1.58 1.40 0.29 0.05 6.15 95.47 73 11.4 60.90 13.27 7.02 2.31 0.09 0.93 1.58 1.43 0.29 0.05 7.17 95.05 75 3.6 48.65 12.89 11.54 2.55 0.23 1.40 0.92 1.48 0.25 0.05 9.84 89.79	68	12.1	75.23	12.00	3 /1	1.08	0.10	0.33	1.32	1.50	0.25	0.00	1 50	00 60
72 5.4 62.52 13.15 7.16 2.11 0.08 0.99 1.58 1.40 0.29 0.05 6.15 95.47 73 11.4 60.90 13.27 7.02 2.31 0.09 0.93 1.58 1.43 0.29 0.05 7.17 95.05 75 3.6 48.65 12.89 11.54 2.55 0.23 1.40 0.92 1.48 0.25 0.05 9.84 89.79	60	70	61.20	13 36	6 31	2 08	0.00	1 0.72	1.50	1.00	0.27	0.00	 5 8 3	03.00 03.70
73 11.4 60.90 13.27 7.02 2.31 0.09 0.93 1.58 1.43 0.29 0.05 7.17 95.05 75 3.6 48.65 12.89 11.54 2.55 0.23 1.40 0.92 1.48 0.25 0.05 9.84 89.79	70	т.Э 5 Л	62.52	13.50	7 16	2.00	0.07 0.08	0.00	1.50	1.4	0.20	0.05	6 15	Q5 /7
75 3.6 48.65 12.89 11.54 2.55 0.23 1.40 0.92 1.48 0.25 0.05 9.84 89.79	72	11 /	60 00	13.15	7.10	2.11 2.21	0.00	0.99	1.50	1.40	0.29	0.05	7 17	95.47 QE NE
1.0 0.0 40.00 12.00 11.04 2.00 0.20 1.40 0.92 1.40 0.20 0.00 9.04 09.79	75	3 C	18 65	10.27	11 51	2.31	0.09	1 10	0.00	1.40	0.29	0.05	0.01	80.70
	10	3.0 7 A	40.00	12.09	6.67	2.00	0.23	0.02	0.9Z	1.40	0.20	0.05	J.04 7 52	05.19
77 10.5 64.47 13.44 5.73 1.96 0.07 0.94 1.67 1.09 0.28 0.04 5.82 95.92	70 77	10 5	64 47	13.44	5.73	1 96	0.12	0.92	1.00	1.09	0.30	0.00	5.82	95.92 95.40

サロマ湖・網走湖・能取湖・藻琴湖・濤沸湖の表層堆積物における主要元素の分布(予報)

付表 2 (続き)

Appendix table 2 (Continued)

Station	Depth (m)	SiO ₂	Al ₂ O ₃	Na ₂ O	MgO	P ₂ O ₅	S	K₂O	CaO	TiO ₂	MnO	Fe ₂ O ₃	Total
A01	4.3	63.17	12.10	4.47	1.61	0.14	0.84	1.21	3.35	0.37	0.10	8.24	95.60
A02	5.2	68.29	12.18	4.84	1.65	0.08	0.85	1.22	2.55	0.33	0.08	7.54	99.62
A03	6.2	66.04	12.35	4.51	1.63	0.06	0.82	1.27	4.63	0.36	0.09	7.55	99.31
A04	7.0	64.75	14.11	4.77	1.53	0.06	0.78	1.12	5.46	0.33	0.10	6.59	99.60
A05	7.7	66.37	14.30	5.41	1.43	0.05	0.77	1.15	4.03	0.32	0.10	6.43	100.36
A06	8.8	64.11	13.35	5.45	1.60	0.06	0.86	1.39	2.16	0.30	0.07	6.14	95.49
A07	10.5	65.36	13.77	5.71	1.64	0.06	0.89	1.47	2.21	0.29	0.07	5.89	97.37
A08	11.5	63.62	14.15	6.32	2.02	0.07	1.01	1.66	1.18	0.29	0.05	6.71	97.08
A09	13.1	64.08	14.07	6.32	2.17	0.07	0.99	1.68	1.11	0.28	0.04	6.46	97.28
A10	15.1	63.32	13.44	7.80	2.42	0.05	0.98	1.66	1.07	0.28	0.04	6.21	97.26
A11	15.8	63.29	13.19	8.34	2.25	0.07	0.94	1.62	1.06	0.28	0.04	6.07	97.15
A12	16.4	63.16	12.90	8.60	2.18	0.12	0.96	1.62	1.06	0.27	0.03	5.77	96.67
A13	17.5	62.71	12.61	9.54	2.42	0.08	0.96	1.58	1.07	0.27	0.03	5.57	96.84
A14	15.1	64.58	13.35	7.53	2.04	0.07	0.91	1.65	1.30	0.28	0.05	6.42	98.17
A15	14.0	64.64	13.63	6.53	2.10	0.08	0.96	1.64	1.15	0.28	0.04	6.33	97.40
A16	11.6	75.86	11.46	4.31	0.99	0.05	0.78	1.35	1.75	0.26	0.04	3.74	100.59
A17	11.2	66.76	13.54	6.05	1.73	0.08	0.87	1.68	1.25	0.28	0.04	5.53	97.80
A18	9.5	75.62	11.31	3.63	0.84	0.03	0.75	1.39	1.45	0.26	0.04	3.46	98.77
A19	9.1	73.20	11.79	4.51	1.13	0.04	0.74	1.51	1.90	0.26	0.04	4.20	99.32
A20	7.8	70.68	11.55	4.47	1.13	0.05	0.74	1.54	1.30	0.26	0.04	4.26	96.02
A21	8.1	72.98	11.93	4.44	1.18	0.05	0.75	1.56	1.27	0.27	0.04	4.49	98.97
A22	6.8	74.69	11.72	4.62	1.26	0.05	0.74	1.55	1.43	0.27	0.05	4.61	100.99
A23	4.9	75.14	10.60	3.49	0.94	0.04	0.75	1.28	1.33	0.26	0.04	4.14	98.02
A24	4.4	76.90	11.36	4.00	1.35	0.08	0.72	1.48	1.78	0.24	0.05	3.96	101.92
B01	1.3	64.38	13.39	6.41	2.03	0.08	0.86	1.90	1.36	0.27	0.05	6.34	97.06
B02	3.7	61.46	13.63	7.06	2.40	0.08	1.06	1.82	1.54	0.28	0.04	7.03	96.39
B03	5.0	61.88	13.83	7.59	2.44	0.09	1.03	1.76	1.21	0.28	0.05	6.78	96.94
B04	6.3	61.86	13.34	7.82	2.35	0.09	1.04	1.72	1.38	0.28	0.04	6.71	96.62
B05	3.6	62.81	14.07	8.09	3.01	0.11	1.07	1.73	1.68	0.27	0.04	5.64	98.54
B06	4.0	63.60	13.87	7.12	2.44	0.12	1.04	1.75	1.19	0.27	0.04	5.97	97.40
B07	4.7	62.12	13.65	7.49	2.40	0.08	1.01	1.75	1.66	0.28	0.04	6.21	96.69
B08	5.9	63.25	13.90	7.58	2.22	0.08	0.93	1.77	1.13	0.28	0.04	6.33	97.53
B09	8.8	63.77	13.58	7.10	2.18	0.06	0.90	1.76	1.16	0.28	0.04	6.41	97.24
C01	3.8	62.24	13.48	6.66	2.05	0.12	0.86	1.60	1.88	0.30	0.06	7.51	96.76
C02	4.7	61.96	13.56	6.57	2.06	0.11	0.88	1.66	1.84	0.30	0.06	7.66	96.69
C03	5.7	62.31	13.57	6.51	2.07	0.11	0.91	1.65	1.48	0.30	0.06	7.64	96.60
C04	7.6	62.09	13.44	7.33	2.36	0.09	0.95	1.62	1.37	0.30	0.05	7.34	96.95
C05	9.2	61.57	13.12	8.06	2.18	0.08	0.97	1.60	1.33	0.29	0.05	7.17	96.43
C06	10.0	61.30	13.15	7.66	2.27	0.09	0.97	1.57	1.41	0.29	0.05	7.12	95.87

高田裕行・瀬戸浩二・前川公彦・川尻敏文

付表3 網走湖における表層堆積物の主要元素濃度(重量%)

Appendix table 3 Concentration of major elements (weight percent) in surface sediments of Lake Abashiri (ABcor was collected August 2, 2006).

Station	Depth (m)	SiO ₂	Al ₂ O ₃	Na ₂ O	MgO	P ₂ O ₅	S	K₂O	CaO	TiO ₂	MnO	Fe ₂ O ₃	Total
1	5.6	63.33	9.75	6.81	1.82	0.08	1.11	1.01	1.94	0.28	0.06	6.00	92.19
2	4.5	66.20	9.07	6.48	1.97	0.10	1.15	0.96	1.40	0.27	0.06	6.16	93.82
3	8.2	67.19	10.54	6.67	1.90	0.09	1.31	1.12	1.04	0.28	0.03	8.08	98.25
4	9.5	62.18	11.33	9.39	2.60	0.06	1.27	1.21	1.03	0.28	0.02	7.40	96.77
5	9.8	62.25	10.63	10.00	2.71	0.09	1.22	1.14	1.11	0.27	0.02	6.55	95.99
6	12.1	62.35	11.64	8.13	2.63	0.08	1.21	1.22	1.03	0.28	0.03	7.27	95.87
7	11.5	66.56	11.99	4.56	2.03	0.08	1.23	1.30	1.28	0.29	0.03	8.44	97.81
8	15.8	63.21	11.93	6.47	2.52	0.09	1.19	1.28	1.06	0.28	0.03	7.30	95.37
9	16.6	64.07	12.04	6.30	2.74	0.11	1.15	1.33	1.10	0.28	0.02	7.17	96.32
10	1.8	57.95	14.49	4.13	1.50	0.05	0.69	0.48	6.89	0.43	0.30	9.13	96.03
11	2.0	61.30	15.53	4.20	1.28	0.04	0.68	0.63	8.19	0.33	0.26	7.63	100.07
12	16.3	63.81	12.12	5.49	2.52	0.08	1.14	1.41	1.15	0.29	0.03	7.16	95.19
13	13.6	63.33	12.08	6.00	2.64	0.10	1.16	1.31	1.13	0.28	0.03	7.04	95.09
14	14.9	63.99	11.70	7.75	2.44	0.08	1.20	1.33	1.14	0.28	0.03	6.96	96.91
15	8.2	68.31	11.71	3.75	1.98	0.10	1.20	1.27	1.15	0.29	0.03	8.26	98.05
16	8.6	67.29	12.33	3.56	1.95	0.07	1.23	1.36	1.03	0.30	0.03	8.87	98.02
17	10.2	65.91	12.49	4.19	2.34	0.09	1.13	1.39	1.12	0.29	0.03	7.74	96.73
18	12.8	65.77	11.38	5.47	2.30	0.10	1.12	1.29	1.15	0.28	0.03	7.10	95.99
19	9.8	64.83	11.79	8.29	2.61	0.12	1.12	1.32	1.13	0.29	0.03	7.14	98.66
20	7.4	64.11	11.24	8.27	2.49	0.11	1.18	1.22	1.02	0.28	0.03	7.14	97.07
21	1.9	62.18	11.53	2.46	0.91	0.07	0.70	1.10	4.37	0.29	0.17	9.56	93.35
22	8.6	66.74	12.39	5.67	2.34	0.12	1.13	1.40	1.30	0.30	0.04	7.31	98.73
23	5.1	66.29	11.52	5.65	2.08	0.11	1.17	1.32	1.43	0.29	0.05	7.26	97.17
24	2.4	67.10	12.03	2.99	1.37	0.15	0.86	1.40	1.78	0.29	0.07	6.83	94.87
25	5.0	67.69	11.41	5.80	2.17	0.09	1.13	1.36	1.32	0.29	0.04	6.80	98.10
26	5.2	64.94	12.49	5.48	1.90	0.11	1.16	1.15	1.40	0.29	0.06	7.54	96.52
27	1.5	68.76	13.40	3.01	0.97	0.05	0.71	1.35	4.06	0.29	0.10	7.72	100.43
ABWQ4		62.83	11.40	8.63	2.53	0.10	1.22	1.23	1.06	0.28	0.03	6.93	96.22
ABWQ4_FEB		65.73	10.83	7.19	2.20	0.10	1.23	1.21	1.06	0.28	0.03	7.23	97.09
Abcor		63.15	11.51	7.75	2.43	0.08	1.21	1.25	1.07	0.28	0.03	7.01	95.75

付表4 能取湖における表層堆積物の主要元素濃度(重量%)

Appendix table 4 Concentration of major elements (weight percent) in surface sediments of Lake Notoro.

Station	Depth (m)	SiO ₂	Al ₂ O ₃	Na ₂ O	MgO	P_2O_5	S	K₂O	CaO	TiO ₂	MnO	Fe ₂ O ₃	Total
1	3.2	59.98	14.40	5.41	1.31	0.04	0.71	0.67	6.89	0.35	0.21	6.14	96.12
2	2.7	60.47	13.85	5.89	1.64	0.04	0.73	0.62	5.53	0.41	0.25	6.57	95.99
3	8.7	71.31	9.01	2.43	1.60	0.04	0.72	1.08	2.00	0.37	0.26	9.25	98.06
4	10.2	74.38	10.31	2.99	0.86	0.02	0.68	1.21	2.04	0.27	0.08	4.97	97.81
5	17.7	67.46	11.77	5.25	1.41	0.06	0.83	1.65	2.04	0.27	0.04	4.83	95.64
6	21.1	62.11	11.14	11.96	2.77	0.12	1.12	1.34	1.38	0.27	0.03	4.80	97.05
7	18.9	62.11	11.14	11.96	2.77	0.12	1.12	1.34	1.38	0.27	0.03	4.80	97.05
8	21.8	64.40	11.48	7.91	2.29	0.09	1.16	1.35	1.40	0.27	0.03	5.43	95.82
9	14.3	66.13	12.21	5.51	1.87	0.06	1.25	1.45	1.76	0.29	0.04	5.96	96.54
10	11.7	65.68	12.32	5.43	1.91	0.06	1.30	1.40	1.31	0.29	0.04	6.22	95.97
11	4.4	58.33	14.17	5.06	1.20	0.06	0.73	0.67	5.65	0.34	0.21	6.72	93.14
12	10.0	64.27	11.49	5.45	1.71	0.04	1.21	1.41	1.47	0.28	0.05	5.41	92.80
13	4.5	66.71	11.92	6.07	1.52	0.05	1.01	1.60	2.26	0.29	0.05	4.02	95.51
14	13.6	62.17	11.28	10.36	2.76	0.07	1.24	1.27	1.16	0.26	0.02	4.69	95.29
15	3.4	61.23	14.97	5.71	1.33	0.06	0.79	0.64	6.17	0.33	0.20	6.02	97.45
16	3.2	60.13	15.26	5.76	1.10	0.05	0.71	0.60	6.56	0.31	0.19	5.06	95.73
17	7.0	63.29	13.75	5.95	1.09	0.05	0.78	0.87	5.24	0.30	0.15	5.06	96.53
18	7.1	62.02	13.63	5.38	1.35	0.03	0.75	0.83	5.26	0.33	0.19	5.76	95.54
19	15.0	63.45	11.62	7.86	2.65	0.08	1.22	1.40	1.37	0.27	0.04	5.18	95.16
20	9.6	64.49	12.94	5.47	1.09	0.06	0.83	1.03	4.16	0.31	0.14	5.52	96.04
21	4.7	61.26	14.26	5.23	1.07	0.04	0.72	0.74	5.78	0.32	0.19	5.51	95.12
22	16.6	71.95	9.36	2.28	0.95	0.03	0.68	1.19	1.69	0.34	0.12	7.02	95.62
23	15.1	62.67	12.54	7.04	1.64	0.08	0.91	1.17	3.92	0.28	0.09	5.85	96.20
B01	19.9	66.65	12.17	5.52	2.46	0.11	1.15	1.46	1.32	0.28	0.03	5.83	96.98
B02	18.1	65.68	12.05	6.08	2.09	0.08	1.20	1.45	1.32	0.28	0.03	5.76	96.02
B03	16.3	62.41	11.48	10.44	2.63	0.08	1.21	1.36	1.26	0.27	0.03	5.00	96.17
B04	14.0	63.67	11.72	8.60	2.40	0.08	1.21	1.41	1.44	0.27	0.03	5.18	96.00
B05	12.2	65.20	11.75	7.41	2.25	0.06	1.19	1.45	1.50	0.27	0.03	5.11	96.23
B06	10.2	66.51	11.57	6.31	1.58	0.05	1.06	1.55	1.68	0.27	0.04	4.60	95.22
B07	9.1	65.64	11.38	4.92	1.33	0.04	1.00	1.53	1.80	0.27	0.04	4.34	92.29
B08	8.1	67.02	11.76	4.75	1.28	0.06	0.94	1.60	1.99	0.27	0.05	4.31	94.03
B09	7.2	67.81	11.69	4.60	1.13	0.05	0.87	1.66	1.92	0.27	0.04	4.02	94.06
B10	6.0	72.61	12.29	5.06	1.03	0.04	0.87	1.85	2.15	0.28	0.04	3.91	100.12
B11	4.8	69.57	11.95	5.08	0.99	0.05	0.85	1.53	2.74	0.28	0.04	3.42	96.49
B12	3.1	72.77	13.19	4.69	0.68	0.03	0.70	1.20	3.69	0.25	0.06	2.91	100.17
B13	2.3	71.89	12.59	4.93	0.89	0.00	0.68	1.20	3.45	0.30	0.09	3.91	99.94
B14	1.6	70.89	12.37	4.35	0.70	0.02	0.71	1.22	3.37	0.24	0.06	2.53	96.46
B15	0.7	69.62	11.53	4.62	0.70	0.03	0.75	1.58	2.67	0.27	0.04	2.68	94.50
8-Feb		66.33	12.34	5.84	2.16	0.10	1.16	1.50	1.43	0.29	0.04	6.05	97.23
9_060803		64.27	11.36	9.41	2.55	0.08	1.18	1.34	1.29	0.27	0.03	5.19	96.98

高田裕行・瀬戸浩二・前川公彦・川尻敏文

付表 5	藻琴湖における表層堆積物の主要元素濃度	复(重量 %)
------	---------------------	---------

Appendix table 5 Concentration of major elements (weight percent) in surface sediments of Lake Mokoto.

Station	Depth (m)	SiO ₂	Al ₂ O ₃	Na ₂ O	MgO	P ₂ O ₅	S	K₂O	CaO	TiO ₂	MnO	Fe ₂ O ₃	Total
1	0.6	75.40	11.00	3.73	0.96	0.05	0.74	1.35	2.73	0.28	0.08	5.37	101.67
2	2.5	60.25	12.68	7.55	2.10	0.07	1.43	1.18	2.08	0.28	0.05	6.76	94.43
3	1.9	59.54	12.93	8.90	2.31	0.17	1.33	1.06	1.77	0.28	0.05	7.06	95.40
4	0.9	60.49	12.18	7.21	2.04	0.08	1.46	1.01	1.84	0.29	0.05	7.49	94.13
5	1.0	57.21	11.67	6.68	1.77	0.08	1.18	0.77	6.23	0.32	0.16	6.31	92.36
6	3.2	57.17	11.23	8.70	2.15	0.05	1.43	0.97	1.72	0.27	0.04	6.38	90.12
7	1.8	59.91	13.21	4.92	1.87	0.07	1.58	1.01	1.86	0.28	0.06	7.36	92.14
8	2.1	58.60	13.22	7.23	2.07	0.11	1.37	1.02	1.89	0.28	0.04	6.65	92.48
9	4.6	58.12	11.99	9.27	2.39	0.09	1.42	1.03	1.75	0.27	0.08	6.81	93.22
10	3.3	58.53	12.28	7.25	1.99	0.08	1.45	1.02	1.84	0.28	0.05	6.83	91.60
11	1.0	59.05	12.42	6.06	1.66	0.21	1.11	1.06	2.27	0.28	0.08	7.20	91.40
1_winter		56.40	11.60	5.43	1.80	0.15	1.38	0.99	1.67	0.28	0.08	7.68	87.45

付表6 濤沸湖における表層堆積物の主要元素濃度(重量%)

Appendix table 6 Concentration of major elements (weight percent) in surface sediments of Lake Tofutsu.

Station	Depth (m)	SiO ₂	Al ₂ O ₃	Na ₂ O	MgO	P_2O_5	S	K₂O	CaO	TiO ₂	MnO	Fe ₂ O ₃	Total
1	1.0	69.54	9.01	4.35	1.39	0.07	1.31	0.80	2.04	0.27	0.06	5.48	94.34
2	1.1	66.14	8.99	5.24	1.23	0.01	1.79	0.88	2.56	0.27	0.07	6.77	93.96
3	0.5	61.59	11.81	4.38	1.20	0.03	1.08	0.89	4.60	0.27	0.09	4.79	90.73
4	1.0	64.18	8.97	6.80	2.07	0.01	1.98	0.95	2.53	0.27	0.07	6.85	94.67
5	1.1	62.00	8.24	8.45	1.73	0.01	2.06	0.93	2.06	0.26	0.05	6.42	92.21
6	0.9	64.16	9.86	9.05	2.11	0.03	1.41	0.91	3.57	0.27	0.08	5.53	96.97
7	0.9	66.57	10.14	7.75	1.88	0.04	1.27	1.15	2.85	0.27	0.06	5.10	97.07
8	0.9	66.94	12.01	5.80	1.40	0.06	0.89	1.12	4.65	0.28	0.10	5.01	98.26
9		65.71	9.94	8.14	1.87	0.03	1.31	1.10	3.20	0.27	0.05	5.15	96.76
10		64.63	10.49	8.00	1.99	0.03	1.48	1.23	2.92	0.27	0.05	5.30	96.38
1_FEB		68.18	8.60	6.12	1.14	0.04	1.38	0.85	1.88	0.26	0.06	5.18	93.68